These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 21685558)
1. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Son DI; Shim JH; Park DH; Jung JH; Lee JM; Park WI; Kim TW; Choi WK Nanotechnology; 2011 Jul; 22(29):295203. PubMed ID: 21685558 [TBL] [Abstract][Full Text] [Related]
2. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634 [TBL] [Abstract][Full Text] [Related]
3. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer. Son DI; Kim JH; Park DH; Choi WK; Li F; Ham JH; Kim TW Nanotechnology; 2008 Feb; 19(5):055204. PubMed ID: 21817602 [TBL] [Abstract][Full Text] [Related]
4. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Son DI; Kim TW; Shim JH; Jung JH; Lee DU; Lee JM; Park WI; Choi WK Nano Lett; 2010 Jul; 10(7):2441-7. PubMed ID: 20504010 [TBL] [Abstract][Full Text] [Related]
5. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C(60) molecules embedded in a polymethyl methacrylate layer. Cho SH; Lee DI; Jung JH; Kim TW Nanotechnology; 2009 Aug; 20(34):345204. PubMed ID: 19652271 [TBL] [Abstract][Full Text] [Related]
6. Electrical bistabilities and memory mechanisms of organic bistable devices fabricated utilizing SnO2 nanoparticles embedded in a poly(methyl methacrylate) layer. Kwak JK; Yun DY; Son DI; Jung JH; Lee DU; Kim TW J Nanosci Nanotechnol; 2010 Nov; 10(11):7735-8. PubMed ID: 21138021 [TBL] [Abstract][Full Text] [Related]
7. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. Liu J; Yin Z; Cao X; Zhao F; Lin A; Xie L; Fan Q; Boey F; Zhang H; Huang W ACS Nano; 2010 Jul; 4(7):3987-92. PubMed ID: 20540553 [TBL] [Abstract][Full Text] [Related]
8. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties. Kim K; Park S; Hahm SG; Lee TJ; Kim DM; Kim JC; Kwon W; Ko YG; Ree M J Phys Chem B; 2009 Jul; 113(27):9143-50. PubMed ID: 19518112 [TBL] [Abstract][Full Text] [Related]
9. Memory effects of nonvolatile memory devices with a floating gate fabricated utilizing Ag nanoparticles embedded into a polymethylmethacrylate layer. Kim WT; Yun DY; Jung JH; Kim TW J Nanosci Nanotechnol; 2011 Jan; 11(1):791-5. PubMed ID: 21446547 [TBL] [Abstract][Full Text] [Related]
10. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Zhou Y; Han ST; Xu ZX; Roy VA Nanotechnology; 2012 Aug; 23(34):344014. PubMed ID: 22885601 [TBL] [Abstract][Full Text] [Related]
11. Single active-layer structured dual-function devices using hybrid polymer-quantum dots. Son DI; Park DH; Ie SY; Choi WK; Choi JW; Li F; Kim TW Nanotechnology; 2008 Oct; 19(39):395201. PubMed ID: 21832586 [TBL] [Abstract][Full Text] [Related]
12. Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) ultrathin films. Jiang G; Baba A; Advincula R Langmuir; 2007 Jan; 23(2):817-25. PubMed ID: 17209639 [TBL] [Abstract][Full Text] [Related]
13. Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Ling QD; Lim SL; Song Y; Zhu CX; Chan DS; Kang ET; Neoh KG Langmuir; 2007 Jan; 23(1):312-9. PubMed ID: 17190520 [TBL] [Abstract][Full Text] [Related]
14. Effect of the ZnS Shell Layer on the Electrical Properties of Organic Bistable Devices Fabricated Utilizing CdSe/CdS/ZnS Core-Shell-Shell Quantum Dots Embedded in a Poly(methylmethacrylate) Layer. Lee NH; Yun DY; Choi DH; Kim SW; Kim TW J Nanosci Nanotechnol; 2016 Jun; 16(6):6271-4. PubMed ID: 27427701 [TBL] [Abstract][Full Text] [Related]
15. Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites. Li F; Son DI; Cho SH; Kim TW Nanotechnology; 2009 May; 20(18):185202. PubMed ID: 19420606 [TBL] [Abstract][Full Text] [Related]
16. Effect of a blocking layer on the decrease in the leakage current in organic bistable devices. Yoo CH; Ko SH; Kim TW J Nanosci Nanotechnol; 2013 Sep; 13(9):6463-6. PubMed ID: 24205684 [TBL] [Abstract][Full Text] [Related]
17. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers. Wang W; Hwang SK; Kim KL; Lee JH; Cho SM; Park C ACS Appl Mater Interfaces; 2015 May; 7(20):10957-65. PubMed ID: 25943406 [TBL] [Abstract][Full Text] [Related]
18. Improved Memory Effect of ZnO Nanorods Embedded in an Insulating Polymethylmethacrylate Layer. Valanarasu S; Kathaiingam A; Rhee JK; Chandramohan R; Vijayan TA; Karunakaran M J Nanosci Nanotechnol; 2015 Feb; 15(2):1416-20. PubMed ID: 26353665 [TBL] [Abstract][Full Text] [Related]