BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21685679)

  • 1. SPIO-RGD nanoparticles as a molecular targeting probe for imaging tumor angiogenesis using synchrotron radiation.
    Li J; Zhang C; Yang K; Liu P; Xu LX
    J Synchrotron Radiat; 2011 Jul; 18(Pt 4):612-6. PubMed ID: 21685679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of MR molecular imaging probes with cysteine-terminated peptides and their potential for in vivo tumour detection.
    Xu F; Lei D; Du X; Zhang C; Xie X; Yin D
    Contrast Media Mol Imaging; 2011; 6(1):46-54. PubMed ID: 20865697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Angiogenesis Targeted Radiosensitization Therapy Using Gold Nanoprobes Guided by MRI/SPECT Imaging.
    Yang Y; Zhang L; Cai J; Li X; Cheng D; Su H; Zhang J; Liu S; Shi H; Zhang Y; Zhang C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1718-32. PubMed ID: 26731347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific targeting of angiogenesis in lung cancer with RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a 4.7T magnetic resonance scanner.
    Liu C; Liu DB; Long GX; Wang JF; Mei Q; Hu GY; Qiu H; Hu GQ
    Chin Med J (Engl); 2013 Jun; 126(12):2242-7. PubMed ID: 23786932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles.
    Lee HY; Li Z; Chen K; Hsu AR; Xu C; Xie J; Sun S; Chen X
    J Nucl Med; 2008 Aug; 49(8):1371-9. PubMed ID: 18632815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-CT molecular imaging of tumor angiogenesis using a magnetite nano-cluster probe.
    Liu P; Li J; Zhang C; Xu LX
    J Biomed Nanotechnol; 2013 Jun; 9(6):1041-9. PubMed ID: 23858968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.
    Zheng SW; Huang M; Hong RY; Deng SM; Cheng LF; Gao B; Badami D
    J Biomater Appl; 2014 Mar; 28(7):1051-9. PubMed ID: 23796630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles.
    Fan C; Gao W; Chen Z; Fan H; Li M; Deng F; Chen Z
    Int J Pharm; 2011 Feb; 404(1-2):180-90. PubMed ID: 21087660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging.
    Mathejczyk JE; Pauli J; Dullin C; Napp J; Tietze LF; Kessler H; Resch-Genger U; Alves F
    Mol Imaging; 2011 Dec; 10(6):469-80. PubMed ID: 22201538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis.
    Lee J; Lee TS; Ryu J; Hong S; Kang M; Im K; Kang JH; Lim SM; Park S; Song R
    J Nucl Med; 2013 Jan; 54(1):96-103. PubMed ID: 23232276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging.
    Yang J; Luo Y; Xu Y; Li J; Zhang Z; Wang H; Shen M; Shi X; Zhang G
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5420-8. PubMed ID: 25695661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological study of early-stage lung cancer using synchrotron radiation.
    Liu P; Sun J; Guan Y; Yue W; Xu LX; Li Y; Zhang G; Hwu Y; Je JH; Margaritondo G
    J Synchrotron Radiat; 2008 Jan; 15(Pt 1):36-42. PubMed ID: 18097076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature.
    Ma W; Li G; Wang J; Yang W; Zhang Y; Conti PS; Chen K
    Amino Acids; 2014 Dec; 46(12):2721-32. PubMed ID: 25182731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner.
    Zhang C; Jugold M; Woenne EC; Lammers T; Morgenstern B; Mueller MM; Zentgraf H; Bock M; Eisenhut M; Semmler W; Kiessling F
    Cancer Res; 2007 Feb; 67(4):1555-62. PubMed ID: 17308094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroPET, MicroSPECT, and NIR fluorescence imaging of biomolecules in vivo.
    Li ZB; Chen X
    Methods Mol Biol; 2009; 544():461-81. PubMed ID: 19488719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor uptake of the RGD dimeric probe (99m)Tc-G3-2P4-RGD2 is correlated with integrin αvβ3 expressed on both tumor cells and neovasculature.
    Liu Z; Jia B; Shi J; Jin X; Zhao H; Li F; Liu S; Wang F
    Bioconjug Chem; 2010 Mar; 21(3):548-55. PubMed ID: 20184307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung cancer and angiogenesis imaging using synchrotron radiation.
    Liu X; Zhao J; Sun J; Gu X; Xiao T; Liu P; Xu LX
    Phys Med Biol; 2010 Apr; 55(8):2399-409. PubMed ID: 20360634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct comparison of tumor angiogenesis with ⁶⁸Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging.
    Shao Y; Liang W; Kang F; Yang W; Ma X; Li G; Zong S; Chen K; Wang J
    Amino Acids; 2014 Oct; 46(10):2355-64. PubMed ID: 24990522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging integrin αvβ3 on blood vessels with 111In-RGD2 in head and neck tumor xenografts.
    Terry SY; Abiraj K; Frielink C; van Dijk LK; Bussink J; Oyen WJ; Boerman OC
    J Nucl Med; 2014 Feb; 55(2):281-6. PubMed ID: 24408894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optimal concentration of c-erbB2 antisense probe labeled with superparamagnetic iron oxide nanoparticles for magnetic resonance imaging in tumor-bearing nude mice].
    Wen Z; Liu H; Wen M; He H; Tan S; Li S
    Nan Fang Yi Ke Da Xue Xue Bao; 2013 Apr; 33(4):496-501. PubMed ID: 23644106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.