These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21685973)

  • 21. Imaging of the lens capsule with an ultrahigh-resolution spectral optical coherence tomography prototype based on a femtosecond laser.
    Kaluzny BJ; Gora M; Karnowski K; Grulkowski I; Kowalczyk A; Wojtkowski M
    Br J Ophthalmol; 2010 Mar; 94(3):275-7. PubMed ID: 20215371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Astigmatism corrected common path probe for optical coherence tomography.
    Singh K; Yamada D; Tearney G
    Lasers Surg Med; 2017 Mar; 49(3):312-318. PubMed ID: 27490964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on the Advanced Czerny-Turner Imaging Spectrometer with High Resolution in Broadband].
    Yan LW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1756-60. PubMed ID: 26601404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy.
    Ansari R; Myrtus C; Aherrahrou R; Erdmann J; Schweikard A; Hüttmann G
    Opt Lett; 2014 Jan; 39(1):45-7. PubMed ID: 24365818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multispectral in vivo three-dimensional optical coherence tomography of human skin.
    Alex A; Povazay B; Hofer B; Popov S; Glittenberg C; Binder S; Drexler W
    J Biomed Opt; 2010; 15(2):026025. PubMed ID: 20459270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second.
    El-Haddad MT; Bozic I; Tao YK
    J Biophotonics; 2018 Apr; 11(4):e201700268. PubMed ID: 29149542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrahigh-resolution full-field optical coherence tomography.
    Dubois A; Grieve K; Moneron G; Lecaque R; Vabre L; Boccara C
    Appl Opt; 2004 May; 43(14):2874-83. PubMed ID: 15143811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.
    Yasuno Y; Endo T; Makita S; Aoki G; Itoh M; Yatagai T
    J Biomed Opt; 2006; 11(1):014014. PubMed ID: 16526891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s.
    Choi D; Hiro-Oka H; Furukawa H; Yoshimura R; Nakanishi M; Shimizu K; Ohbayashi K
    Opt Lett; 2008 Jun; 33(12):1318-20. PubMed ID: 18552944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity.
    Xue Q
    Appl Opt; 2011 Apr; 50(10):1338-44. PubMed ID: 21460898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors.
    Xia G; Wu S; Wang G; Hu M; Xing J
    Appl Opt; 2017 Nov; 56(32):9069-9073. PubMed ID: 29131197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy.
    Coquoz S; Marchand PJ; Bouwens A; Mouchiroud L; Sorrentino V; Szlag D; Auwerx J; Lasser T
    PLoS One; 2017; 12(7):e0181676. PubMed ID: 28727813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
    Chen TC; Cense B; Pierce MC; Nassif N; Park BH; Yun SH; White BR; Bouma BE; Tearney GJ; de Boer JF
    Arch Ophthalmol; 2005 Dec; 123(12):1715-20. PubMed ID: 16344444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced optical design of Czerny-Turner spectrometer with high flux and low aberration in broadband.
    Wu S; Wang T; Huang C; Gu J; Yu L; Xue H; Shen Y
    Appl Opt; 2022 Apr; 61(11):3077-3083. PubMed ID: 35471282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extended focus depth for Fourier domain optical coherence microscopy.
    Leitgeb RA; Villiger M; Bachmann AH; Steinmann L; Lasser T
    Opt Lett; 2006 Aug; 31(16):2450-2. PubMed ID: 16880852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical coherence tomography in dermatology.
    Sattler E; Kästle R; Welzel J
    J Biomed Opt; 2013 Jun; 18(6):061224. PubMed ID: 23314617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Astigmatism-free Czerny-Turner spectrometer with a low f-number by a bicylinder lens.
    Zhou Q; Zou Z
    Appl Opt; 2022 Sep; 61(27):7985-7990. PubMed ID: 36255919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy.
    Boone M; Jemec GB; Del Marmol V
    Exp Dermatol; 2012 Oct; 21(10):740-4. PubMed ID: 22913427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.