These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21685989)

  • 1. Accurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial frequency domain.
    Gardner AR; Venugopalan V
    Opt Lett; 2011 Jun; 36(12):2269-71. PubMed ID: 21685989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical sampling depth in the spatial frequency domain.
    Hayakawa CK; Karrobi K; Pera V; Roblyer D; Venugopalan V
    J Biomed Opt; 2019 Jul; 24(7):. PubMed ID: 30218504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method.
    Long F; Li F; Intes X; Kotha SP
    J Biomed Opt; 2016 Mar; 21(3):36003. PubMed ID: 26953662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium.
    Cai F; He S
    J Biomed Opt; 2012 Apr; 17(4):040502. PubMed ID: 22559668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations.
    Yuan Y; Yu L; Doğan Z; Fang Q
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media.
    Hayakawa CK; Spanier J; Venugopalan V
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):301-11. PubMed ID: 24562029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography.
    Hänninen N; Pulkkinen A; Arridge S; Tarvainen T
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35396833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media.
    Yan S; Tran AP; Fang Q
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30788914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging.
    Panigrahi S; Gioux S
    J Biomed Opt; 2018 Dec; 24(7):1-6. PubMed ID: 30550050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative determination of dynamical properties using coherent spatial frequency domain imaging.
    Rice TB; Konecky SD; Mazhar A; Cuccia DJ; Durkin AJ; Choi B; Tromberg BJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2108-14. PubMed ID: 21979516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon diffusion near the point-of-entry in anisotropically scattering turbid media.
    Vitkin E; Turzhitsky V; Qiu L; Guo L; Itzkan I; Hanlon EB; Perelman LT
    Nat Commun; 2011 Dec; 2():587. PubMed ID: 22158442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of reflectance imaging using a parallel Monte Carlo method.
    Chen C; Lu JQ; Li K; Zhao S; Brock RS; Hu XH
    Med Phys; 2007 Jul; 34(7):2939-48. PubMed ID: 17822002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented in graphics processing units: new criterion for processing transmittance data.
    Carbone N; Di Rocco H; Iriarte DI; Pomarico JA
    J Biomed Opt; 2010; 15(3):035002. PubMed ID: 20615002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiative transport in fluorescence-enhanced frequency domain photon migration.
    Rasmussen JC; Joshi A; Pan T; Wareing T; McGhee J; Sevick-Muraca EM
    Med Phys; 2006 Dec; 33(12):4685-700. PubMed ID: 17278821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-wavelength spatial frequency domain diffuse optical tomography using single-pixel imaging based on lock-in photon counting.
    Li T; Qin Z; Hou X; Dan M; Li J; Zhang L; Zhou Z; Gao F
    Opt Express; 2019 Aug; 27(16):23138-23156. PubMed ID: 31510597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2015 Jan; 42(1):54-68. PubMed ID: 25563247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography.
    Chen J; Fang Q; Intes X
    J Biomed Opt; 2012 Oct; 17(10):106009. PubMed ID: 23224008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.