These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21685989)

  • 21. Explicit solutions of the radiative transport equation in the P3 approximation.
    Liemert A; Kienle A
    Med Phys; 2014 Nov; 41(11):111916. PubMed ID: 25370649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical solutions of the radiative transport equation for turbid and fluorescent layered media.
    Liemert A; Reitzle D; Kienle A
    Sci Rep; 2017 Jun; 7(1):3819. PubMed ID: 28630496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimodal optical molecular image reconstruction with frequency domain measurements.
    Bartels M; Chen W; Bardhan R; Ke S; Halas NJ; Wareing T; McGhee J; Joshi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6655-8. PubMed ID: 19963930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction.
    Aguiar P; Pino F; Silva-Rodríguez J; Pavía J; Ros D; Ruibal A; El Bitar Z
    Med Phys; 2014 Mar; 41(3):032501. PubMed ID: 24593739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The performance of a hybrid analytical-Monte Carlo system response matrix in pinhole SPECT reconstruction.
    El Bitar Z; Pino F; Candela C; Ros D; Pavía J; Rannou FR; Ruibal A; Aguiar P
    Phys Med Biol; 2014 Dec; 59(24):7573-85. PubMed ID: 25415206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
    Shi Z; Zhao H; Xu K
    J Biomed Opt; 2011 Oct; 16(10):105002. PubMed ID: 22029346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Truncated Fourier-series approximation of the time-domain radiative transfer equation using finite elements.
    Pulkkinen A; Tarvainen T
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):470-8. PubMed ID: 23456123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of layered tissue optical properties from spatial frequency-domain spectroscopy and a deterministic radiative transport solver.
    Horan ST; Gardner AR; Saager R; Durkin AJ; Venugopalan V
    J Biomed Opt; 2018 Nov; 24(7):1-11. PubMed ID: 30456934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging.
    Kang D; Kupinski MA
    J Biomed Opt; 2012 Jan; 17(1):016010. PubMed ID: 22352660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approximate P3 solution for the semi-infinite medium: steady state and time domain.
    Wang X
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28914007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of a radiative transfer equation and diffusion approximation hybrid forward solver for fluorescence molecular imaging.
    Gorpas D; Andersson-Engels S
    J Biomed Opt; 2012 Dec; 17(12):126010. PubMed ID: 23208221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffuse photon density wave measurements and Monte Carlo simulations.
    Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA
    J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling.
    Yudovsky D; Durkin AJ
    Appl Opt; 2011 Jul; 50(21):4237-45. PubMed ID: 21772413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Impact of Positron Range on PET Resolution, Evaluated with Phantoms and PHITS Monte Carlo Simulations for Conventional and Non-conventional Radionuclides.
    Carter LM; Kesner AL; Pratt EC; Sanders VA; Massicano AVF; Cutler CS; Lapi SE; Lewis JS
    Mol Imaging Biol; 2020 Feb; 22(1):73-84. PubMed ID: 31001765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo method solution of the broadband fluorescent radiative transfer equation considering fluorescent cascade.
    Yalçın RA; Ertürk H
    Appl Opt; 2021 Feb; 60(4):1068-1077. PubMed ID: 33690418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation.
    Beekman FJ; de Jong HW; Slijpen ET
    Phys Med Biol; 1999 Aug; 44(8):N183-92. PubMed ID: 10473218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.