BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21685992)

  • 1. Plasmonic rod dimers as elementary planar chiral meta-atoms.
    Zhukovsky SV; Kremers C; Chigrin DN
    Opt Lett; 2011 Jun; 36(12):2278-80. PubMed ID: 21685992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of a planar metamaterial with chiral symmetry breaking.
    Huang WX; Zhang Y; Tang XM; Cai LS; Zhao JW; Zhou L; Wang QJ; Huang CP; Zhu YY
    Opt Lett; 2011 Sep; 36(17):3359-61. PubMed ID: 21886210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field optical experiments on low-symmetry split-ring-resonator arrays.
    Diessel D; Decker M; Linden S; Wegener M
    Opt Lett; 2010 Nov; 35(21):3661-3. PubMed ID: 21042383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation.
    Feth N; König M; Husnik M; Stannigel K; Niegemann J; Busch K; Wegener M; Linden S
    Opt Express; 2010 Mar; 18(7):6545-54. PubMed ID: 20389678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials.
    Ding P; Fan C; Cheng Y; Liang E; Xue Q
    Appl Opt; 2012 Apr; 51(12):1879-85. PubMed ID: 22534892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superdirective dimers of coupled self-resonant split ring resonators: Analytical modelling and numerical and experimental validation.
    Vallecchi A; Radkovskaya A; Li L; Faulkner G; Stevens CJ; Shamonina E
    Sci Rep; 2020 Jan; 10(1):274. PubMed ID: 31937860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods.
    Auguié B; Alonso-Gómez JL; Guerrero-Martínez A; Liz-Marzán LM
    J Phys Chem Lett; 2011 Apr; 2(8):846-51. PubMed ID: 26295617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mueller matrix study of the dichroism in nanorods dimers: rod separation effects.
    de Dios C; Jiménez A; García F; García-Martín A; Cebollada A; Armelles G
    Opt Express; 2019 Jul; 27(15):21142-21152. PubMed ID: 31510196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.
    Li G; Li Q; Yang L; Wu L
    Opt Lett; 2016 Jul; 41(13):2911-4. PubMed ID: 27367063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials.
    Li Y; Tao X; Chen H; Tam WY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):314-7. PubMed ID: 21383812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular dichroism in planar nonchiral plasmonic metamaterials.
    Yannopapas V
    Opt Lett; 2009 Mar; 34(5):632-4. PubMed ID: 19252575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monopole resonators in planar plasmonic metamaterials.
    Lee JW; Yang JK; Sohn IB; Yoo HK; Kang C; Kee CS
    Opt Express; 2014 Jul; 22(15):18433-9. PubMed ID: 25089462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly tunable optical activity in planar achiral terahertz metamaterials.
    Singh R; Plum E; Zhang W; Zheludev NI
    Opt Express; 2010 Jun; 18(13):13425-30. PubMed ID: 20588473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials.
    Cao T; Zhang L; Simpson RE; Wei C; Cryan MJ
    Opt Express; 2013 Nov; 21(23):27841-51. PubMed ID: 24514301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structures of Pd(II) dimers.
    Bercaw JE; Durrell AC; Gray HB; Green JC; Hazari N; Labinger JA; Winkler JR
    Inorg Chem; 2010 Feb; 49(4):1801-10. PubMed ID: 20092286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-dielectric rod-type metamaterials at optical frequencies.
    Vynck K; Felbacq D; Centeno E; Căbuz AI; Cassagne D; Guizal B
    Phys Rev Lett; 2009 Apr; 102(13):133901. PubMed ID: 19392353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High displacement sensitivity in asymmetric plasmonic nanostructures.
    Tseng HC; Chang CW
    Opt Express; 2010 Aug; 18(17):18360-7. PubMed ID: 20721229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application.
    Zhu L; Dong L; Meng FY; Fu JH; Wu Q
    Appl Opt; 2012 Nov; 51(32):7794-9. PubMed ID: 23142892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna.
    Johnson M; Bowen P; Kundtz N; Bily A
    Appl Opt; 2014 Sep; 53(25):5791-9. PubMed ID: 25321379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.