BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21686051)

  • 1. Quantifying Tight Junction Disruption Caused by Biomimetic pH-Sensitive Hydrogel Drug Carriers.
    Fisher OZ; Peppas NA
    J Drug Deliv Sci Technol; 2008 Jan; 18(1):47-50. PubMed ID: 21686051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery.
    Wood KM; Stone GM; Peppas NA
    Biomacromolecules; 2008 Apr; 9(4):1293-8. PubMed ID: 18330990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers.
    Ichikawa H; Peppas NA
    J Biomed Mater Res A; 2003 Nov; 67(2):609-17. PubMed ID: 14566804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of octreotide and evaluation of mechanism of opening the paracellular tight junctions using superporous hydrogel polymers in Caco-2 cell monolayers.
    Dorkoosh FA; Broekhuizen CA; Borchard G; Rafiee-Tehrani M; Verhoef JC; Junginger HE
    J Pharm Sci; 2004 Mar; 93(3):743-52. PubMed ID: 14762912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium.
    Uskoković V; Lee PP; Walsh LA; Fischer KE; Desai TA
    Biomaterials; 2012 Feb; 33(5):1663-72. PubMed ID: 22116000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release behaviour and biocompatibility of drug-loaded pH sensitive particles.
    Sipahigil O; Gürsoy A; Cakalağaoğlu F; Okar I
    Int J Pharm; 2006 Mar; 311(1-2):130-8. PubMed ID: 16427223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical behavior and cytotoxic effects of p(methacrylic acid-g-ethylene glycol) nanospheres for oral delivery of proteins.
    Torres-Lugo M; García M; Record R; Peppas NA
    J Control Release; 2002 Apr; 80(1-3):197-205. PubMed ID: 11943398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal Drug Absorption Enhancement by
    Haasbroek A; Willers C; Glyn M; du Plessis L; Hamman J
    Pharmaceutics; 2019 Jan; 11(1):. PubMed ID: 30669246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.
    Samak G; Chaudhry KK; Gangwar R; Narayanan D; Jaggar JH; Rao R
    Biochem J; 2015 Feb; 465(3):503-15. PubMed ID: 25377781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents.
    Schoener CA; Hutson HN; Peppas NA
    Polym Int; 2012 Jun; 61(6):874-879. PubMed ID: 23087546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery.
    Deli MA
    Biochim Biophys Acta; 2009 Apr; 1788(4):892-910. PubMed ID: 18983815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models.
    Wood KM; Stone GM; Peppas NA
    Acta Biomater; 2010 Jan; 6(1):48-56. PubMed ID: 19481619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery.
    Sajeesh S; Sharma CP
    Drug Deliv; 2011 May; 18(4):227-35. PubMed ID: 21067275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable hydrophilic carriers for the oral delivery of hematological factor IX for hemophilia B treatment.
    Horava SD; Moy KJ; Peppas NA
    Int J Pharm; 2016 Nov; 514(1):220-228. PubMed ID: 27863665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells.
    Amasheh S; Schmidt T; Mahn M; Florian P; Mankertz J; Tavalali S; Gitter AH; Schulzke JD; Fromm M
    Cell Tissue Res; 2005 Jul; 321(1):89-96. PubMed ID: 16158492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPAF-II, a cell culture model to study pancreatic epithelial cell structure and function.
    Rajasekaran SA; Gopal J; Espineda C; Ryazantsev S; Schneeberger EE; Rajasekaran AK
    Pancreas; 2004 Oct; 29(3):e77-83. PubMed ID: 15367897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells.
    Sadeghi AM; Dorkoosh FA; Avadi MR; Weinhold M; Bayat A; Delie F; Gurny R; Larijani B; Rafiee-Tehrani M; Junginger HE
    Eur J Pharm Biopharm; 2008 Sep; 70(1):270-8. PubMed ID: 18492606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Sensitive hydrogels as gastrointestinal tract absorption enhancers: transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model.
    Torres-Lugo M; García M; Record R; Peppas NA
    Biotechnol Prog; 2002; 18(3):612-6. PubMed ID: 12052080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates.
    DiMarco RL; Hunt DR; Dewi RE; Heilshorn SC
    Biomaterials; 2017 Jun; 129():152-162. PubMed ID: 28342321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.