BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 21687609)

  • 1. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review.
    Brodeur G; Yau E; Badal K; Collier J; Ramachandran KB; Ramakrishnan S
    Enzyme Res; 2011; 2011():787532. PubMed ID: 21687609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of traits and recalcitrance reduction of field-grown
    Li M; Pu Y; Yoo CG; Gjersing E; Decker SR; Doeppke C; Shollenberger T; Tschaplinski TJ; Engle NL; Sykes RW; Davis MF; Baxter HL; Mazarei M; Fu C; Dixon RA; Wang ZY; Neal Stewart C; Ragauskas AJ
    Biotechnol Biofuels; 2017; 10():12. PubMed ID: 28053668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
    Bhagia S; Li H; Gao X; Kumar R; Wyman CE
    Biotechnol Biofuels; 2016; 9():245. PubMed ID: 27833657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments.
    Pu Y; Hu F; Huang F; Davison BH; Ragauskas AJ
    Biotechnol Biofuels; 2013 Jan; 6(1):15. PubMed ID: 23356640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.
    Tian D; Chandra RP; Lee JS; Lu C; Saddler JN
    Biotechnol Biofuels; 2017; 10():157. PubMed ID: 28649276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage steam explosion pretreatment of softwood with 2-naphthol as carbocation scavenger.
    Seidel CM; Brethauer S; Gyenge L; Rudolf von Rohr P; Studer MH
    Biotechnol Biofuels; 2019; 12():37. PubMed ID: 30828382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production.
    Basak B; Kumar R; Bharadwaj AVSLS; Kim TH; Kim JR; Jang M; Oh SE; Roh HS; Jeon BH
    Bioresour Technol; 2023 Feb; 369():128413. PubMed ID: 36462762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic biomass pretreatment using AFEX.
    Balan V; Bals B; Chundawat SP; Marshall D; Dale BE
    Methods Mol Biol; 2009; 581():61-77. PubMed ID: 19768616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.
    Meng X; Ragauskas AJ
    Curr Opin Biotechnol; 2014 Jun; 27():150-8. PubMed ID: 24549148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot-scale steam explosion pretreatment with 2-naphthol to overcome high softwood recalcitrance.
    Pielhop T; Amgarten J; Studer MH; von Rohr PR
    Biotechnol Biofuels; 2017; 10():130. PubMed ID: 28529543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery.
    Yang H; Zhang X; Luo H; Liu B; Shiga TM; Li X; Kim JI; Rubinelli P; Overton JC; Subramanyam V; Cooper BR; Mo H; Abu-Omar MM; Chapple C; Donohoe BS; Makowski L; Mosier NS; McCann MC; Carpita NC; Meilan R
    Biotechnol Biofuels; 2019; 12():171. PubMed ID: 31297159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redesigning plant cell walls for the biomass-based bioeconomy.
    Carpita NC; McCann MC
    J Biol Chem; 2020 Oct; 295(44):15144-15157. PubMed ID: 32868456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities.
    Satlewal A; Agrawal R; Bhagia S; Sangoro J; Ragauskas AJ
    Biotechnol Adv; 2018 Dec; 36(8):2032-2050. PubMed ID: 30193965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
    Robak K; Balcerek M
    Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass - A review.
    Meenakshisundaram S; Fayeulle A; Leonard E; Ceballos C; Pauss A
    Bioresour Technol; 2021 Jul; 331():125053. PubMed ID: 33827779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes.
    Kucharska K; Rybarczyk P; Hołowacz I; Łukajtis R; Glinka M; Kamiński M
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.