These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21687870)

  • 1. A fully automated iterative moving averaging (AIMA) technique for baseline correction.
    Prakash BD; Wei YC
    Analyst; 2011 Aug; 136(15):3130-5. PubMed ID: 21687870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline correction using adaptive iteratively reweighted penalized least squares.
    Zhang ZM; Chen S; Liang YZ
    Analyst; 2010 May; 135(5):1138-46. PubMed ID: 20419267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal choice of baseline correction for multivariate calibration of spectra.
    Liland KH; Almøy T; Mevik BH
    Appl Spectrosc; 2010 Sep; 64(9):1007-16. PubMed ID: 20828437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra.
    De Sanctis S; Malloni WM; Kremer W; Tomé AM; Lang EW; Neidig KP; Kalbitzer HR
    J Magn Reson; 2011 Jun; 210(2):177-83. PubMed ID: 21459640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated spectral smoothing with spatially adaptive penalized least squares.
    Urbas AA; Choquette SJ
    Appl Spectrosc; 2011 Jun; 65(6):665-77. PubMed ID: 21639989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New background correction approach based on polynomial regressions for on-line liquid chromatography-Fourier transform infrared spectrometry.
    Kuligowski J; Quintás G; Garrigues S; de la Guardia M
    J Chromatogr A; 2009 Apr; 1216(15):3122-30. PubMed ID: 19232625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Locally Dynamically Moving Average Algorithm for the Fully Automated Baseline Correction of Raman Spectrum].
    Gao PF; Yang R; Ji J; Guo HM; Hu Q; Zhuang SL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1281-5. PubMed ID: 26415444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological weighted penalized least squares for background correction.
    Li Z; Zhan DJ; Wang JJ; Huang J; Xu QS; Zhang ZM; Zheng YB; Liang YZ; Wang H
    Analyst; 2013 Aug; 138(16):4483-92. PubMed ID: 23778299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks.
    Mani-Varnosfaderani A; Kanginejad A; Gilany K; Valadkhani A
    Anal Chim Acta; 2016 Oct; 940():56-64. PubMed ID: 27662759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of algorithms for automated phase correction of NMR spectra.
    de Brouwer H
    J Magn Reson; 2009 Dec; 201(2):230-8. PubMed ID: 19836281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving matrix effects exploiting the second-order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms II. Prediction and figures of merit.
    García MD; Culzoni MJ; De Zan MM; Valverde RS; Galera MM; Goicoechea HC
    J Chromatogr A; 2008 Feb; 1179(2):115-24. PubMed ID: 18067904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms I. Effect of signal pre-treatment.
    De Zan MM; Gil García MD; Culzoni MJ; Siano RG; Goicoechea HC; Martínez Galera M
    J Chromatogr A; 2008 Feb; 1179(2):106-14. PubMed ID: 18093603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.
    Balabin RM; Smirnov SV
    Anal Chim Acta; 2011 Apr; 692(1-2):63-72. PubMed ID: 21501713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust baseline correction algorithm for signal dense NMR spectra.
    Chang D; Banack CD; Shah SL
    J Magn Reson; 2007 Aug; 187(2):288-92. PubMed ID: 17562374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equating, or correction for between-block effects with application to body fluid LC-MS and NMR metabolomics data sets.
    Draisma HH; Reijmers TH; van der Kloet F; Bobeldijk-Pastorova I; Spies-Faber E; Vogels JT; Meulman JJ; Boomsma DI; van der Greef J; Hankemeier T
    Anal Chem; 2010 Feb; 82(3):1039-46. PubMed ID: 20052990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing and analysis of GC/LC-MS-based metabolomics data.
    Want E; Masson P
    Methods Mol Biol; 2011; 708():277-98. PubMed ID: 21207297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Least squares spectral resolution of liquid chromatography-mass spectrometry data of glycerophospholipids.
    Zeng YX; Mjøs SA; Meier S; Lin CC; Vadla R
    J Chromatogr A; 2013 Mar; 1280():23-34. PubMed ID: 23375768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey.
    Batsoulis AN; Siatis NG; Kimbaris AC; Alissandrakis EK; Pappas CS; Tarantilis PA; Harizanis PC; Polissiou MG
    J Agric Food Chem; 2005 Jan; 53(2):207-10. PubMed ID: 15656650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrument-independent software tools for the analysis of MS-MS and LC-MS lipidomics data.
    Haimi P; Chaithanya K; Kainu V; Hermansson M; Somerharju P
    Methods Mol Biol; 2009; 580():285-94. PubMed ID: 19784606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptive and Fully Automated Baseline Correction Method for Raman Spectroscopy Based on Morphological Operations and Mollification.
    Chen H; Xu W; Broderick NGR
    Appl Spectrosc; 2019 Mar; 73(3):284-293. PubMed ID: 30334459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.