These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21688)

  • 61. Control of intracellular calcium in presynaptic nerve terminals.
    Blaustein MP; Ratzlaff RW; Schweitzer ES
    Fed Proc; 1980 Aug; 39(10):2790-5. PubMed ID: 6773813
    [No Abstract]   [Full Text] [Related]  

  • 62. Characteristics of the active transport of Ca2+ by submitochondrial vesicles.
    Niggli V; Mattenberger M; Gazzotti P
    Eur J Biochem; 1978 Sep; 89(2):361-6. PubMed ID: 710397
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Membrane permeability transition promoted by phosphate enhances 1-anilino-8-naphthalene sulfonate fluorescence in calcium-loaded liver mitochondria.
    Maddaiah VT; Kumbar U
    J Bioenerg Biomembr; 1993 Aug; 25(4):419-27. PubMed ID: 7693659
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential.
    Bernardi P; Azzone GF
    Eur J Biochem; 1983 Aug; 134(2):377-83. PubMed ID: 6191982
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria.
    Mela L; Chance B
    Biochemistry; 1968 Nov; 7(11):4059-63. PubMed ID: 5722269
    [No Abstract]   [Full Text] [Related]  

  • 66. The nature of betaine efflux from rat liver mitochondria.
    Porter RK; Scott JM; Brand MD
    Biochem Soc Trans; 1992 Aug; 20(3):247S. PubMed ID: 1426541
    [No Abstract]   [Full Text] [Related]  

  • 67. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.
    Bassani RA; Fagian MM; Bassani JW; Vercesi AE
    J Mol Cell Cardiol; 1998 Oct; 30(10):2013-23. PubMed ID: 9799655
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapid and extensive release of Ca2+ from energized mitochondria induced by EGTA.
    Riley WW; Pfeiffer DR
    J Biol Chem; 1986 Jan; 261(1):28-31. PubMed ID: 2416747
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Control of Ca2+ influx and efflux in liver mitochondria.
    Akerman KE
    Biochem Soc Trans; 1980 Jun; 8(3):262-4. PubMed ID: 7399047
    [No Abstract]   [Full Text] [Related]  

  • 72. Interaction of ion movements and local anesthetics in mitochondrial membranes.
    Chance B; Mela L; Harris EJ
    Fed Proc; 1968; 27(3):902-6. PubMed ID: 4231745
    [No Abstract]   [Full Text] [Related]  

  • 73. A spectral shift in cytochrome a induced by calcium ions.
    Wikström M; Saari H
    Biochim Biophys Acta; 1975 Nov; 408(2):170-9. PubMed ID: 811258
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regulation of transmembrane ion transport by reaction products of phospholipase A2. I. Effects of lysophospholipids on mitochondrial Ca2+ transport.
    Lenzen S; Görlich JK; Rustenbeck I
    Biochim Biophys Acta; 1989 Jun; 982(1):140-6. PubMed ID: 2472836
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium efflux mechanism in sperm mitochondria.
    Breitbart H; Rubinstein S; Gruberger M
    Biochim Biophys Acta; 1996 Jun; 1312(2):79-84. PubMed ID: 8672542
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Is there Ca2+(Sr2+)-3-hydroxybutyrate symport in rat-liver mitochondria? A reappraisal.
    Moody AJ; West IC; Mitchell R; Mitchell P
    Eur J Biochem; 1986 Jun; 157(2):243-9. PubMed ID: 3086092
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of the membrane potential upon the Ca(2+)- and cumene hydroperoxide-induced permeabilization of the inner mitochondrial membrane.
    Novgorodov SA; Gudz TI; Kushnareva YE; Eriksson O; Leikin YN
    FEBS Lett; 1991 Dec; 295(1-3):77-80. PubMed ID: 1722466
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maturation in liver mitochondria of Ruthenium Red-sensitive calcium-ion-transport activity and the influence of glucagon administration in vivo and in utero.
    Prpić V; Bygrave FL
    Biochem J; 1981 Apr; 196(1):207-16. PubMed ID: 6171266
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Extramitochondrial Ca2+ controls the activity of the Ca2+-transporting system in mitochondria].
    Leĭkin IuN; Gonsalves MP
    Dokl Akad Nauk SSSR; 1986; 290(4):1011-4. PubMed ID: 3096680
    [No Abstract]   [Full Text] [Related]  

  • 80. Calcium efflux parallel to total phosphate retention in rat liver mitochondria.
    Rigoni F; Panato L; Deana R
    Int J Biochem; 1984; 16(11):1121-5. PubMed ID: 6084602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.