BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

904 related articles for article (PubMed ID: 21688801)

  • 1. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines.
    Turesky RJ; Le Marchand L
    Chem Res Toxicol; 2011 Aug; 24(8):1169-214. PubMed ID: 21688801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methemoglobin Formation and Characterization of Hemoglobin Adducts of Carcinogenic Aromatic Amines and Heterocyclic Aromatic Amines.
    Pathak KV; Chiu TL; Amin EA; Turesky RJ
    Chem Res Toxicol; 2016 Mar; 29(3):255-69. PubMed ID: 26824300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and biomarkers of heterocyclic aromatic amines in humans.
    Bellamri M; Walmsley SJ; Turesky RJ
    Genes Environ; 2021 Jul; 43(1):29. PubMed ID: 34271992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats.
    Turesky RJ
    Toxicol Lett; 2007 Feb; 168(3):219-27. PubMed ID: 17174486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines.
    Turesky RJ
    Curr Drug Metab; 2004 Apr; 5(2):169-80. PubMed ID: 15078194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterocyclic aromatic amine metabolism, DNA adduct formation, mutagenesis, and carcinogenesis.
    Turesky RJ
    Drug Metab Rev; 2002 Aug; 34(3):625-50. PubMed ID: 12214671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in heterocyclic aromatic amines: An update on food safety and hazardous control from food processing to dietary intake.
    Chen X; Jia W; Zhu L; Mao L; Zhang Y
    Compr Rev Food Sci Food Saf; 2020 Jan; 19(1):124-148. PubMed ID: 33319523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing labile sulfenamide and sulfinamide serum albumin adducts of carcinogenic arylamines by chemical oxidation.
    Peng L; Turesky RJ
    Anal Chem; 2013 Jan; 85(2):1065-72. PubMed ID: 23240913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-diet interactions in exposure to heterocyclic aromatic amines and bulky DNA adduct levels in blood leukocytes.
    Ho V; Peacock S; Massey TE; Godschalk RW; van Schooten FJ; Chen J; King WD
    Environ Mol Mutagen; 2015 Aug; 56(7):609-20. PubMed ID: 26010176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs).
    Shabbir MA; Raza A; Anjum FM; Khan MR; Suleria HA
    Crit Rev Food Sci Nutr; 2015; 55(1):82-93. PubMed ID: 24915407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to heterocyclic aromatic amines from the consumption of cooked red meat and its effect on human cancer risk: a review.
    Alaejos MS; González V; Afonso AM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jan; 25(1):2-24. PubMed ID: 17952757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans.
    Sinha R; Rothman N; Brown ED; Mark SD; Hoover RN; Caporaso NE; Levander OA; Knize MG; Lang NP; Kadlubar FF
    Cancer Res; 1994 Dec; 54(23):6154-9. PubMed ID: 7954461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of Heterocyclic Aromatic Amines metabolism susceptible to form DNA adducts in humans.
    Delannée V; Langouët S; Siegel A; Théret N
    Toxicol Lett; 2019 Jan; 300():18-30. PubMed ID: 30315953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes.
    Nauwelaërs G; Bellamri M; Fessard V; Turesky RJ; Langouët S
    Chem Res Toxicol; 2013 Sep; 26(9):1367-77. PubMed ID: 23898916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells.
    Bellamri M; Yao L; Bonala R; Johnson F; Von Weymarn LB; Turesky RJ
    Arch Toxicol; 2019 Jul; 93(7):1893-1902. PubMed ID: 31203411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing proteolytic digestion conditions for the analysis of serum albumin adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a potential human carcinogen formed in cooked meat.
    Peng L; Turesky RJ
    J Proteomics; 2014 May; 103():267-78. PubMed ID: 24698664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological significance of trace levels of mutagenic heterocyclic aromatic amines in human diet: a critical review.
    Stavric B
    Food Chem Toxicol; 1994 Oct; 32(10):977-94. PubMed ID: 7959450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies.
    Dong H; Xian Y; Li H; Bai W; Zeng X
    Compr Rev Food Sci Food Saf; 2020 Mar; 19(2):365-404. PubMed ID: 33325180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterocyclic aromatic amines in meat: Formation mechanisms, toxicological implications, occurrence, risk evaluation, and analytical methods.
    Oz E; Aoudeh E; Murkovic M; Toldra F; Gomez-Zavaglia A; Brennan C; Proestos C; Zeng M; Oz F
    Meat Sci; 2023 Nov; 205():109312. PubMed ID: 37625356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecies metabolism of heterocyclic aromatic amines and the uncertainties in extrapolation of animal toxicity data for human risk assessment.
    Turesky RJ
    Mol Nutr Food Res; 2005 Feb; 49(2):101-17. PubMed ID: 15617087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.