These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21688811)

  • 1. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
    Kolpak AM; Grossman JC
    Nano Lett; 2011 Aug; 11(8):3156-62. PubMed ID: 21688811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
    Kucharski TJ; Ferralis N; Kolpak AM; Zheng JO; Nocera DG; Grossman JC
    Nat Chem; 2014 May; 6(5):441-7. PubMed ID: 24755597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.
    Kolpak AM; Grossman JC
    J Chem Phys; 2013 Jan; 138(3):034303. PubMed ID: 23343272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
    Chen H; Yang C; Ren H; Zhang W; Cui X; Tang Q
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37944917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release.
    Xu X; Wu B; Zhang P; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22655-22663. PubMed ID: 33970599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Solid-State Photochemical Energy Storage in Polymers with Azobenzene Side Groups.
    Wallace C; Griffiths K; Dale BL; Roberts S; Parsons J; Griffin JM; Görtz V
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31787-31794. PubMed ID: 37350514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels.
    Xu X; Zhang P; Wu B; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50135-50142. PubMed ID: 33085470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.
    Luo W; Feng Y; Qin C; Li M; Li S; Cao C; Long P; Liu E; Hu W; Yoshino K; Feng W
    Nanoscale; 2015 Oct; 7(39):16214-21. PubMed ID: 26289389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating the design of solar thermal fuel materials through high throughput simulations.
    Liu Y; Grossman JC
    Nano Lett; 2014 Dec; 14(12):7046-50. PubMed ID: 25372463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Earth-abundant Materials for Large-scale Solar Fuels Generation.
    Prabhakar RR; Cui W; Tilley SD
    Chimia (Aarau); 2018 May; 72(5):333-337. PubMed ID: 29789072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.