These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21689480)

  • 1. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burial Level Change Defines a High Energetic Relevance for Protein Binding Interfaces.
    Li Z; He Y; Wong L; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):410-21. PubMed ID: 26357227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.
    Liu Q; Ren J; Song J; Li J
    PLoS One; 2015; 10(12):e0144486. PubMed ID: 26675422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating water exclusion theory into β contacts to predict binding free energy changes and binding hot spots.
    Liu Q; Hoi SC; Kwoh CK; Wong L; Li J
    BMC Bioinformatics; 2014 Feb; 15():57. PubMed ID: 24568581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules.
    Li Z; Li J
    Proteins; 2010 Dec; 78(16):3304-16. PubMed ID: 20818601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods.
    Lise S; Archambeau C; Pontil M; Jones DT
    BMC Bioinformatics; 2009 Oct; 10():365. PubMed ID: 19878545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Double water exclusion': a hypothesis refining the O-ring theory for the hot spots at protein interfaces.
    Li J; Liu Q
    Bioinformatics; 2009 Mar; 25(6):743-50. PubMed ID: 19179356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
    Zerbe BS; Hall DR; Vajda S; Whitty A; Kozakov D
    J Chem Inf Model; 2012 Aug; 52(8):2236-44. PubMed ID: 22770357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of hot-spot residues in protein-protein interactions by computational docking.
    Grosdidier S; Fernández-Recio J
    BMC Bioinformatics; 2008 Oct; 9():447. PubMed ID: 18939967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.
    Zhu X; Mitchell JC
    Proteins; 2011 Sep; 79(9):2671-83. PubMed ID: 21735484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Approaches for Protein⁻Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment.
    Liu S; Liu C; Deng L
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30287797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction of protein hot spot residues.
    Morrow JK; Zhang S
    Curr Pharm Des; 2012; 18(9):1255-65. PubMed ID: 22316154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-supervised boosting SVM for predicting hot spots at protein-protein interfaces.
    Xu B; Wei X; Deng L; Guan J; Zhou S
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S6. PubMed ID: 23282146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-accessible surface area: How well can be applied to hot-spot detection?
    Martins JM; Ramos RM; Pimenta AC; Moreira IS
    Proteins; 2014 Mar; 82(3):479-90. PubMed ID: 24105801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HotSprint: database of computational hot spots in protein interfaces.
    Guney E; Tuncbag N; Keskin O; Gursoy A
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D662-6. PubMed ID: 17959648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.
    Agrawal NJ; Helk B; Trout BL
    FEBS Lett; 2014 Jan; 588(2):326-33. PubMed ID: 24239538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feature-based approach to modeling protein-protein interaction hot spots.
    Cho KI; Kim D; Lee D
    Nucleic Acids Res; 2009 May; 37(8):2672-87. PubMed ID: 19273533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.