These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21689524)

  • 1. Transmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables.
    Jo S; Im W
    Biophys J; 2011 Jun; 100(12):2913-21. PubMed ID: 21689524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins.
    Im W; Jo S; Kim T
    Biochim Biophys Acta; 2012 Feb; 1818(2):252-62. PubMed ID: 21851810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state NMR ensemble dynamics as a mediator between experiment and simulation.
    Kim T; Jo S; Im W
    Biophys J; 2011 Jun; 100(12):2922-8. PubMed ID: 21689525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.
    Cheng X; Jo S; Qi Y; Marassi FM; Im W
    Biophys J; 2015 Apr; 108(8):1954-62. PubMed ID: 25902435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy.
    Wray V; Kinder R; Federau T; Henklein P; Bechinger B; Schubert U
    Biochemistry; 1999 Apr; 38(16):5272-82. PubMed ID: 10213635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-State NMR of Membrane Proteins in Lipid Bilayers: To Spin or Not To Spin?
    Gopinath T; Weber D; Wang S; Larsen E; Veglia G
    Acc Chem Res; 2021 Mar; 54(6):1430-1439. PubMed ID: 33655754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR-based simulation studies of Pf1 coat protein in explicit membranes.
    Cheng X; Jo S; Marassi FM; Im W
    Biophys J; 2013 Aug; 105(3):691-8. PubMed ID: 23931317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determination of virus protein U from HIV-1 by NMR in membrane environments.
    Zhang H; Lin EC; Das BB; Tian Y; Opella SJ
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):3007-3018. PubMed ID: 26362058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles.
    Park SH; De Angelis AA; Nevzorov AA; Wu CH; Opella SJ
    Biophys J; 2006 Oct; 91(8):3032-42. PubMed ID: 16861273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble-based interpretations of NMR structural data to describe protein internal dynamics.
    Ángyán AF; Gáspári Z
    Molecules; 2013 Aug; 18(9):10548-67. PubMed ID: 23999727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters.
    Grage SL; Strandberg E; Wadhwani P; Esteban-Martín S; Salgado J; Ulrich AS
    Eur Biophys J; 2012 May; 41(5):475-82. PubMed ID: 22453992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of oriented sample NMR resonances from a three transmembrane helix protein.
    Murray DT; Hung I; Cross TA
    J Magn Reson; 2014 Mar; 240():34-44. PubMed ID: 24509383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations.
    Monticelli L; Tieleman DP; Fuchs PF
    Biophys J; 2010 Sep; 99(5):1455-64. PubMed ID: 20816057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues.
    McKay MJ; Martfeld AN; De Angelis AA; Opella SJ; Greathouse DV; Koeppe RE
    Biophys J; 2018 Jun; 114(11):2617-2629. PubMed ID: 29874612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations on the first two helices of Vpu from HIV-1.
    Sramala I; Lemaitre V; Faraldo-Gómez JD; Vincent S; Watts A; Fischer WB
    Biophys J; 2003 May; 84(5):3276-84. PubMed ID: 12719257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide.
    McKay MJ; Fu R; Greathouse DV; Koeppe RE
    J Phys Chem B; 2019 Sep; 123(38):8034-8047. PubMed ID: 31483653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-State NMR Approaches to Study Protein Structure and Protein-Lipid Interactions.
    Aisenbrey C; Salnikov ES; Raya J; Michalek M; Bechinger B
    Methods Mol Biol; 2019; 2003():563-598. PubMed ID: 31218633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers.
    Das N; Dai J; Hung I; Rajagopalan MR; Zhou HX; Cross TA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E119-26. PubMed ID: 25548160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic matching of HIV-1 Vpu transmembrane helix-helix interactions is optimized for subcellular location.
    Cole GB; Sharpe S
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):183022. PubMed ID: 31302078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch.
    Park SH; Opella SJ
    J Mol Biol; 2005 Jul; 350(2):310-8. PubMed ID: 15936031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.