These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21689524)

  • 21. Recent advances in magic angle spinning solid state NMR of membrane proteins.
    Wang S; Ladizhansky V
    Prog Nucl Magn Reson Spectrosc; 2014 Oct; 82():1-26. PubMed ID: 25444696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural dynamics and conformational equilibria of SERCA regulatory proteins in membranes by solid-state NMR restrained simulations.
    De Simone A; Mote KR; Veglia G
    Biophys J; 2014 Jun; 106(12):2566-76. PubMed ID: 24940774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning.
    Sharpe S; Yau WM; Tycko R
    Biochemistry; 2006 Jan; 45(3):918-33. PubMed ID: 16411768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle.
    Cady SD; Goodman C; Tatko CD; DeGrado WF; Hong M
    J Am Chem Soc; 2007 May; 129(17):5719-29. PubMed ID: 17417850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.
    Sparks KA; Gleason NJ; Gist R; Langston R; Greathouse DV; Koeppe RE
    Biochemistry; 2014 Jun; 53(22):3637-45. PubMed ID: 24829070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly (15)N-labeled helical membrane proteins in oriented lipid bilayers.
    Marassi FM; Ma C; Gesell JJ; Opella SJ
    J Magn Reson; 2000 May; 144(1):156-61. PubMed ID: 10783286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of membrane protein structures using solution and solid-state NMR.
    Montaville P; Jamin N
    Methods Mol Biol; 2010; 654():261-82. PubMed ID: 20665271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulation of transmembrane polypeptide orientational fluctuations.
    Goodyear DJ; Sharpe S; Grant CW; Morrow MR
    Biophys J; 2005 Jan; 88(1):105-17. PubMed ID: 15489306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.
    Mortazavi A; Rajagopalan V; Sparks KA; Greathouse DV; Koeppe RE
    Chembiochem; 2016 Mar; 17(6):462-5. PubMed ID: 26749271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative NMR studies demonstrate profound differences between two viroporins: p7 of HCV and Vpu of HIV-1.
    Cook GA; Zhang H; Park SH; Wang Y; Opella SJ
    Biochim Biophys Acta; 2011 Feb; 1808(2):554-60. PubMed ID: 20727848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
    Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE
    Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the combined analysis of ²H and ¹⁵N/¹H solid-state NMR data for determination of transmembrane peptide orientation and dynamics.
    Vostrikov VV; Grant CV; Opella SJ; Koeppe RE
    Biophys J; 2011 Dec; 101(12):2939-47. PubMed ID: 22208192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation.
    Nagao T; Mishima D; Javkhlantugs N; Wang J; Ishioka D; Yokota K; Norisada K; Kawamura I; Ueda K; Naito A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2789-98. PubMed ID: 26248014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and Dynamics of Membrane Proteins from Solid-State NMR.
    Mandala VS; Williams JK; Hong M
    Annu Rev Biophys; 2018 May; 47():201-222. PubMed ID: 29498890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers.
    Lu JX; Sharpe S; Ghirlando R; Yau WM; Tycko R
    Protein Sci; 2010 Oct; 19(10):1877-96. PubMed ID: 20669237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane protein structure and dynamics from NMR spectroscopy.
    Hong M; Zhang Y; Hu F
    Annu Rev Phys Chem; 2012; 63():1-24. PubMed ID: 22136620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating tilt angles of membrane-associated helices: comparison of computational and NMR techniques.
    Ulmschneider MB; Sansom MS; Di Nola A
    Biophys J; 2006 Mar; 90(5):1650-60. PubMed ID: 16339877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmembrane domains of viral ion channel proteins: a molecular dynamics simulation study.
    Fischer WB; Forrest LR; Smith GR; Sansom MS
    Biopolymers; 2000 Jun; 53(7):529-38. PubMed ID: 10766949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid bilayers: an essential environment for the understanding of membrane proteins.
    Page RC; Li C; Hu J; Gao FP; Cross TA
    Magn Reson Chem; 2007 Dec; 45 Suppl 1():S2-11. PubMed ID: 18095258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1.
    Ma C; Marassi FM; Jones DH; Straus SK; Bour S; Strebel K; Schubert U; Oblatt-Montal M; Montal M; Opella SJ
    Protein Sci; 2002 Mar; 11(3):546-57. PubMed ID: 11847278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.