These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21689531)

  • 1. Long dwell-time passage of DNA through nanometer-scale pores: kinetics and sequence dependence of motion.
    Jetha NN; Feehan C; Wiggin M; Tabard-Cossa V; Marziali A
    Biophys J; 2011 Jun; 100(12):2974-80. PubMed ID: 21689531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonexponential kinetics of DNA escape from alpha-hemolysin nanopores.
    Wiggin M; Tropini C; Tabard-Cossa V; Jetha NN; Marziali A
    Biophys J; 2008 Dec; 95(11):5317-23. PubMed ID: 18775965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore sequencing technology: nanopore preparations.
    Rhee M; Burns MA
    Trends Biotechnol; 2007 Apr; 25(4):174-81. PubMed ID: 17320228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled translocation of individual DNA molecules through protein nanopores with engineered molecular brakes.
    Rincon-Restrepo M; Mikhailova E; Bayley H; Maglia G
    Nano Lett; 2011 Feb; 11(2):746-50. PubMed ID: 21222450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic Kinetics of DNA Translocation through synthetic nanopores.
    Aksimentiev A; Heng JB; Timp G; Schulten K
    Biophys J; 2004 Sep; 87(3):2086-97. PubMed ID: 15345583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA translocation governed by interactions with solid-state nanopores.
    Wanunu M; Sutin J; McNally B; Chow A; Meller A
    Biophys J; 2008 Nov; 95(10):4716-25. PubMed ID: 18708467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores.
    Bian Y; Wang Z; Chen A; Zhao N
    J Chem Phys; 2015 Nov; 143(18):184908. PubMed ID: 26567685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal vs fishhook hairpin DNA: unzipping locations and mechanisms in the α-hemolysin nanopore.
    Ding Y; Fleming AM; White HS; Burrows CJ
    J Phys Chem B; 2014 Nov; 118(45):12873-82. PubMed ID: 25333648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
    Hall AR; Scott A; Rotem D; Mehta KK; Bayley H; Dekker C
    Nat Nanotechnol; 2010 Dec; 5(12):874-7. PubMed ID: 21113160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
    Banerjee A; Mikhailova E; Cheley S; Gu LQ; Montoya M; Nagaoka Y; Gouaux E; Bayley H
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8165-70. PubMed ID: 20400691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient.
    Wanunu M; Morrison W; Rabin Y; Grosberg AY; Meller A
    Nat Nanotechnol; 2010 Feb; 5(2):160-5. PubMed ID: 20023645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-energy calculations reveal the subtle differences in the interactions of DNA bases with α-hemolysin.
    Manara RM; Guy AT; Wallace EJ; Khalid S
    J Chem Theory Comput; 2015 Feb; 11(2):810-6. PubMed ID: 26579606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in DNA motion control and sequence readout using nanopore devices.
    Carson S; Wanunu M
    Nanotechnology; 2015 Feb; 26(7):074004. PubMed ID: 25642629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the escape of DNA from a nanopore using an alternating current signal.
    Lathrop DK; Ervin EN; Barrall GA; Keehan MG; Kawano R; Krupka MA; White HS; Hibbs AH
    J Am Chem Soc; 2010 Feb; 132(6):1878-85. PubMed ID: 20099878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine.
    Vu T; Borgesi J; Soyring J; D'Alia M; Davidson SL; Shim J
    Nanoscale; 2019 May; 11(21):10536-10545. PubMed ID: 31116213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth DNA transport through a narrowed pore geometry.
    Carson S; Wilson J; Aksimentiev A; Wanunu M
    Biophys J; 2014 Nov; 107(10):2381-93. PubMed ID: 25418307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic mechanics of hairpin DNA translocation through synthetic nanopores.
    Comer J; Dimitrov V; Zhao Q; Timp G; Aksimentiev A
    Biophys J; 2009 Jan; 96(2):593-608. PubMed ID: 19167307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.