These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 21689605)

  • 21. Spatial working memory alters the efficacy of input to visual cortex.
    Merrikhi Y; Clark K; Albarran E; Parsa M; Zirnsak M; Moore T; Noudoost B
    Nat Commun; 2017 Apr; 8():15041. PubMed ID: 28447609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex.
    Wannig A; Stanisor L; Roelfsema PR
    Nat Neurosci; 2011 Sep; 14(10):1243-4. PubMed ID: 21926984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliability of macaque frontal eye field neurons signaling saccade targets during visual search.
    Bichot NP; Thompson KG; Chenchal Rao S; Schall JD
    J Neurosci; 2001 Jan; 21(2):713-25. PubMed ID: 11160450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presaccadic discrimination of receptive field stimuli by area V4 neurons.
    Moore T; Chang MH
    Vision Res; 2009 Jun; 49(10):1227-32. PubMed ID: 18501949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal basis of covert spatial attention in the frontal eye field.
    Thompson KG; Biscoe KL; Sato TR
    J Neurosci; 2005 Oct; 25(41):9479-87. PubMed ID: 16221858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention to both space and feature modulates neuronal responses in macaque area V4.
    McAdams CJ; Maunsell JH
    J Neurophysiol; 2000 Mar; 83(3):1751-5. PubMed ID: 10712494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial attention and the latency of neuronal responses in macaque area V4.
    Lee J; Williford T; Maunsell JH
    J Neurosci; 2007 Sep; 27(36):9632-7. PubMed ID: 17804623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature-based attention and spatial selection in frontal eye fields during natural scene search.
    Ramkumar P; Lawlor PN; Glaser JI; Wood DK; Phillips AN; Segraves MA; Kording KP
    J Neurophysiol; 2016 Sep; 116(3):1328-43. PubMed ID: 27250912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pop-out search instigates beta-gated feature selectivity enhancement across V4 layers.
    Westerberg JA; Sigworth EA; Schall JD; Maier A
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34893538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity in V4 reflects the direction, but not the latency, of saccades during visual search.
    Gee AL; Ipata AE; Goldberg ME
    J Neurophysiol; 2010 Oct; 104(4):2187-93. PubMed ID: 20610790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial and temporal scales of neuronal correlation in visual area V4.
    Smith MA; Sommer MA
    J Neurosci; 2013 Mar; 33(12):5422-32. PubMed ID: 23516307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands.
    Steinmetz NA; Moore T
    Neuron; 2014 Jul; 83(2):496-506. PubMed ID: 25033188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    J Neurosci; 2011 Nov; 31(44):15956-61. PubMed ID: 22049438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision.
    David SV; Hayden BY; Mazer JA; Gallant JL
    Neuron; 2008 Aug; 59(3):509-21. PubMed ID: 18701075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attention selects informative neural populations in human V1.
    Verghese P; Kim YJ; Wade AR
    J Neurosci; 2012 Nov; 32(46):16379-90. PubMed ID: 23152620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bottom-up dependent gating of frontal signals in early visual cortex.
    Ekstrom LB; Roelfsema PR; Arsenault JT; Bonmassar G; Vanduffel W
    Science; 2008 Jul; 321(5887):414-7. PubMed ID: 18635806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
    Hamker FH; Zirnsak M
    Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spike synchrony reveals emergence of proto-objects in visual cortex.
    Martin AB; von der Heydt R
    J Neurosci; 2015 Apr; 35(17):6860-70. PubMed ID: 25926461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4.
    Gregoriou GG; Rossi AF; Ungerleider LG; Desimone R
    Nat Neurosci; 2014 Jul; 17(7):1003-11. PubMed ID: 24929661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.