These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21689665)
1. A novel arterial constitutive model in a commercial finite element package: Application to balloon angioplasty. Zhao X; Liu Y; Zhang W; Wang C; Kassab GS J Theor Biol; 2011 Oct; 286(1):92-9. PubMed ID: 21689665 [TBL] [Abstract][Full Text] [Related]
2. A linearized and incompressible constitutive model for arteries. Liu Y; Zhang W; Wang C; Kassab GS J Theor Biol; 2011 Oct; 286(1):85-91. PubMed ID: 21605567 [TBL] [Abstract][Full Text] [Related]
3. The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty. Gourisankaran V; Sharma MG Crit Rev Biomed Eng; 2000; 28(1-2):47-51. PubMed ID: 10999364 [TBL] [Abstract][Full Text] [Related]
4. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping. Fereidoonnezhad B; Naghdabadi R; Holzapfel GA J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103 [TBL] [Abstract][Full Text] [Related]
5. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model. Polindara C; Waffenschmidt T; Menzel A J Biomech; 2016 Aug; 49(12):2341-8. PubMed ID: 26924658 [TBL] [Abstract][Full Text] [Related]
8. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Holzapfel GA; Stadler M; Schulze-Bauer CA Ann Biomed Eng; 2002 Jun; 30(6):753-67. PubMed ID: 12220076 [TBL] [Abstract][Full Text] [Related]
9. Effects of dispersion of fiber orientation on the mechanical property of the arterial wall. Ren JS J Theor Biol; 2012 May; 301():153-60. PubMed ID: 22391392 [TBL] [Abstract][Full Text] [Related]
10. Microplane constitutive model and computational framework for blood vessel tissue. Caner FC; Carol I J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591 [TBL] [Abstract][Full Text] [Related]
11. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035 [TBL] [Abstract][Full Text] [Related]
12. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. Holzapfel GA; Gasser TC; Ogden RW J Biomech Eng; 2004 Apr; 126(2):264-75. PubMed ID: 15179858 [TBL] [Abstract][Full Text] [Related]
13. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
14. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
15. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. Maher E; Creane A; Lally C; Kelly DJ J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364 [TBL] [Abstract][Full Text] [Related]
16. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546 [TBL] [Abstract][Full Text] [Related]
17. Finite-element analysis of balloon angioplasty. Oh S; Kleinberger M; McElhaney JH Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S108-14. PubMed ID: 7967823 [TBL] [Abstract][Full Text] [Related]
18. A study on large radial motion of arteries in vivo. Singh SI; Devi LS J Biomech; 1990; 23(11):1087-91. PubMed ID: 2277043 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. Avril S; Badel P; Duprey A J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669 [TBL] [Abstract][Full Text] [Related]