BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 21689702)

  • 1. Intestinal lymphatic transport for drug delivery.
    Yáñez JA; Wang SW; Knemeyer IW; Wirth MA; Alton KB
    Adv Drug Deliv Rev; 2011 Sep; 63(10-11):923-42. PubMed ID: 21689702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphatic Drug Absorption via the Enterocytes: Pharmacokinetic Simulation, Modeling, and Considerations for Optimal Drug Development.
    Brocks DR; Davies NM
    J Pharm Pharm Sci; 2018; 21(1s):254s-270s. PubMed ID: 30348249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport.
    Elz AS; Trevaskis NL; Porter CJH; Bowen JM; Prestidge CA
    J Control Release; 2022 Jan; 341():676-701. PubMed ID: 34896450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update.
    Trevaskis NL; Charman WN; Porter CJ
    Adv Drug Deliv Rev; 2008 Mar; 60(6):702-16. PubMed ID: 18155316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route.
    Chaudhary S; Garg T; Murthy RS; Rath G; Goyal AK
    J Drug Target; 2014 Dec; 22(10):871-82. PubMed ID: 25148607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system.
    Lee JB; Zgair A; Malec J; Kim TH; Kim MG; Ali J; Qin C; Feng W; Chiang M; Gao X; Voronin G; Garces AE; Lau CL; Chan TH; Hume A; McIntosh TM; Soukarieh F; Al-Hayali M; Cipolla E; Collins HM; Heery DM; Shin BS; Yoo SD; Kagan L; Stocks MJ; Bradshaw TD; Fischer PM; Gershkovich P
    J Control Release; 2018 Sep; 286():10-19. PubMed ID: 30016732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lymphatic transport in enhancing oral protein and peptide drug delivery.
    Wasan KM
    Drug Dev Ind Pharm; 2002 Oct; 28(9):1047-58. PubMed ID: 12455465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyceride-Mimetic Prodrugs Incorporating Self-Immolative Spacers Promote Lymphatic Transport, Avoid First-Pass Metabolism, and Enhance Oral Bioavailability.
    Hu L; Quach T; Han S; Lim SF; Yadav P; Senyschyn D; Trevaskis NL; Simpson JS; Porter CJ
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13700-13705. PubMed ID: 27482655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs.
    Porter CJ; Trevaskis NL; Charman WN
    Nat Rev Drug Discov; 2007 Mar; 6(3):231-48. PubMed ID: 17330072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.
    Han S; Quach T; Hu L; Wahab A; Charman WN; Stella VJ; Trevaskis NL; Simpson JS; Porter CJ
    J Control Release; 2014 Mar; 177():1-10. PubMed ID: 24398334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal transport as a potential determinant of drug bioavailability.
    Nauli AM; Nauli SM
    Curr Clin Pharmacol; 2013 Aug; 8(3):247-55. PubMed ID: 23343017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations.
    Franco V; Gershkovich P; Perucca E; Bialer M
    Clin Pharmacokinet; 2020 Dec; 59(12):1493-1500. PubMed ID: 32785853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.
    Yao M; Xiao H; McClements DJ
    Annu Rev Food Sci Technol; 2014; 5():53-81. PubMed ID: 24328432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs.
    Dahan A; Hoffman A
    Eur J Pharm Sci; 2005 Mar; 24(4):381-8. PubMed ID: 15734305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs.
    Managuli RS; Raut SY; Reddy MS; Mutalik S
    Expert Opin Drug Deliv; 2018 Aug; 15(8):787-804. PubMed ID: 30025212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug delivery to the lymphatic system.
    Porter CJ
    Crit Rev Ther Drug Carrier Syst; 1997; 14(4):333-93. PubMed ID: 9450175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposomal delivery systems for intestinal lymphatic drug transport.
    Ahn H; Park JH
    Biomater Res; 2016; 20():36. PubMed ID: 27895934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine.
    Khoo SM; Edwards GA; Porter CJ; Charman WN
    J Pharm Sci; 2001 Oct; 90(10):1599-607. PubMed ID: 11745718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triglyceride-mimetic prodrugs of scutellarin enhance oral bioavailability by promoting intestinal lymphatic transport and avoiding first-pass metabolism.
    Wang X; Zhang C; Han N; Luo J; Zhang S; Wang C; Jia Z; Du S
    Drug Deliv; 2021 Dec; 28(1):1664-1672. PubMed ID: 34338567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-based formulations for intestinal lymphatic delivery.
    O'Driscoll CM
    Eur J Pharm Sci; 2002 Jun; 15(5):405-15. PubMed ID: 12036717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.