These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21689922)

  • 21. Tectal control of locomotion, steering, and eye movements in lamprey.
    Saitoh K; Ménard A; Grillner S
    J Neurophysiol; 2007 Apr; 97(4):3093-108. PubMed ID: 17303814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum.
    Shidara M; Kawano K; Gomi H; Kawato M
    Nature; 1993 Sep; 365(6441):50-2. PubMed ID: 8361536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic system modeling of the 3-D oculomotor plant. The 1st step in discerning ocular motor control.
    Korentis GA; Enderle J
    Biomed Sci Instrum; 2001; 37():355-60. PubMed ID: 11347416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational principles of movement neuroscience.
    Wolpert DM; Ghahramani Z
    Nat Neurosci; 2000 Nov; 3 Suppl():1212-7. PubMed ID: 11127840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance monitoring by the supplementary eye field.
    Stuphorn V; Taylor TL; Schall JD
    Nature; 2000 Dec; 408(6814):857-60. PubMed ID: 11130724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The human Turing machine: a neural framework for mental programs.
    Zylberberg A; Dehaene S; Roelfsema PR; Sigman M
    Trends Cogn Sci; 2011 Jul; 15(7):293-300. PubMed ID: 21696998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts.
    Fujiwara Y; Yamashita O; Kawawaki D; Doya K; Kawato M; Toyama K; Sato MA
    Neuroimage; 2009 Apr; 45(2):393-409. PubMed ID: 19150653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area.
    Russo GS; Backus DA; Ye S; Crutcher MD
    J Neurophysiol; 2002 Nov; 88(5):2612-29. PubMed ID: 12424298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory and behavioral properties of neurons in posterior parietal cortex of the awake, trained monkey.
    Robinson DL; Goldberg ME
    Fed Proc; 1978 Jul; 37(9):2258-61. PubMed ID: 95977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studying sensorimotor integration in insects.
    Huston SJ; Jayaraman V
    Curr Opin Neurobiol; 2011 Aug; 21(4):527-34. PubMed ID: 21705212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Representations of uncertainty in sensorimotor control.
    Orbán G; Wolpert DM
    Curr Opin Neurobiol; 2011 Aug; 21(4):629-35. PubMed ID: 21689923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Central modulation of a sensory system by a motor command. One intention with two results].
    Borde M; Curti S; Comas V; Rivero C
    Rev Neurol; 2004 Feb 1-15; 38(3):253-60. PubMed ID: 14963855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational approaches to motor control and their potential role for interpreting motor dysfunction.
    Scott SH; Norman KE
    Curr Opin Neurol; 2003 Dec; 16(6):693-8. PubMed ID: 14624078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational models of decision making: integration, stability, and noise.
    Cain N; Shea-Brown E
    Curr Opin Neurobiol; 2012 Dec; 22(6):1047-53. PubMed ID: 22591667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical functional and sensory modelling of the gastrointestinal tract.
    Liao D; Lelic D; Gao F; Drewes AM; Gregersen H
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3281-99. PubMed ID: 18593660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The computational and neural basis of voluntary motor control and planning.
    Scott SH
    Trends Cogn Sci; 2012 Nov; 16(11):541-9. PubMed ID: 23031541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The problem of redundancy in movement control: the adaptive model theory approach.
    Neilson PD
    Psychol Res; 1993; 55(2):99-106. PubMed ID: 8395065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation.
    Salinas E
    J Neurosci; 2004 Feb; 24(5):1113-8. PubMed ID: 14762129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.