These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21690000)

  • 1. Application of independent component analysis with adaptive density model to complex-valued fMRI data.
    Li H; Correa NM; Rodriguez PA; Calhoun VD; Adali T
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2794-803. PubMed ID: 21690000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2018 Jul; 304():24-38. PubMed ID: 29673968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICA of full complex-valued fMRI data using phase information of spatial maps.
    Yu MC; Lin QH; Kuang LD; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2015 Jul; 249():75-91. PubMed ID: 25857613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixed-point algorithms for constrained ICA and their applications in fMRI data analysis.
    Wang Z
    Magn Reson Imaging; 2011 Nov; 29(9):1288-303. PubMed ID: 21908126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source density-driven independent component analysis approach for fMRI data.
    Hong B; Pearlson GD; Calhoun VD
    Hum Brain Mapp; 2005 Jul; 25(3):297-307. PubMed ID: 15832316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
    Correa N; Adali T; Calhoun VD
    Magn Reson Imaging; 2007 Jun; 25(5):684-94. PubMed ID: 17540281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data With a Phase Sparsity Constraint.
    Kuang LD; Lin QH; Gong XF; Cong F; Wang YP; Calhoun VD
    IEEE Trans Med Imaging; 2020 Apr; 39(4):844-853. PubMed ID: 31425066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General nonunitary constrained ICA and its application to complex-valued fMRI data.
    Rodriguez PA; Anderson M; Calhoun VD; Adali T
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):922-9. PubMed ID: 25420255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the number of independent components for functional magnetic resonance imaging data.
    Li YO; Adali T; Calhoun VD
    Hum Brain Mapp; 2007 Nov; 28(11):1251-66. PubMed ID: 17274023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiblind spatial ICA of fMRI using spatial constraints.
    Lin QH; Liu J; Zheng YR; Liang H; Calhoun VD
    Hum Brain Mapp; 2010 Jul; 31(7):1076-88. PubMed ID: 20017117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI.
    Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA
    Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data.
    Zhang CY; Lin QH; Niu YW; Li WX; Gong XF; Cong F; Wang YP; Calhoun VD
    Hum Brain Mapp; 2023 Dec; 44(17):5712-5728. PubMed ID: 37647216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporally constrained ICA with threshold and its application to fMRI data.
    Long Z; Wang Z; Zhang J; Zhao X; Yao L
    BMC Med Imaging; 2019 Jan; 19(1):6. PubMed ID: 30654748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.
    Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ
    Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust classifier to distinguish noise from fMRI independent components.
    Sochat V; Supekar K; Bustillo J; Calhoun V; Turner JA; Rubin DL
    PLoS One; 2014; 9(4):e95493. PubMed ID: 24748378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.