These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21690001)

  • 1. Determining energy expenditure from treadmill walking using hip-worn inertial sensors: an experimental study.
    Vathsangam H; Emken A; Schroeder ET; Spruijt-Metz D; Sukhatme GS
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2804-15. PubMed ID: 21690001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy estimation of treadmill walking using on-body accelerometers and gyroscopes.
    Vathsangam H; Emken B; Schroeder E; Spruijt-Metz D; Sukhatme GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6497-501. PubMed ID: 21096952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a commercial accelerometer (Tritrac-R3 D) to measure energy expenditure during ambulation.
    Sherman WM; Morris DM; Kirby TE; Petosa RA; Smith BA; Frid DJ; Leenders N
    Int J Sports Med; 1998 Jan; 19(1):43-7. PubMed ID: 9506799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerometer output and its association with energy expenditure in persons with multiple sclerosis.
    Sandroff BM; Motl RW; Suh Y
    J Rehabil Res Dev; 2012; 49(3):467-75. PubMed ID: 22773205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy expenditure of transfemoral amputees during floor and treadmill walking with different speeds.
    Starholm IM; Mirtaheri P; Kapetanovic N; Versto T; Skyttemyr G; Westby FT; Gjovaag T
    Prosthet Orthot Int; 2016 Jun; 40(3):336-42. PubMed ID: 26450911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the Fitbit One® for physical activity measurement at an upper torso attachment site.
    Diaz KM; Krupka DJ; Chang MJ; Shaffer JA; Ma Y; Goldsmith J; Schwartz JE; Davidson KW
    BMC Res Notes; 2016 Apr; 9():213. PubMed ID: 27068022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors.
    Furlanetto KC; Bisca GW; Oldemberg N; Sant'anna TJ; Morakami FK; Camillo CA; Cavalheri V; Hernandes NA; Probst VS; Ramos EM; Brunetto AF; Pitta F
    Arch Phys Med Rehabil; 2010 Feb; 91(2):261-7. PubMed ID: 20159131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracmor system for measuring walking energy expenditure.
    Levine J; Melanson EL; Westerterp KR; Hill JO
    Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV; Westerterp KR; Verduin M; Janssen JD
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of resistance exercise energy expenditure using triaxial accelerometry.
    Stec MJ; Rawson ES
    J Strength Cond Res; 2012 May; 26(5):1413-22. PubMed ID: 22222328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the Tracmor triaxial accelerometer system for walking.
    Levine JA; Baukol PA; Westerterp KR
    Med Sci Sports Exerc; 2001 Sep; 33(9):1593-7. PubMed ID: 11528350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary investigation of energy comparation between gyroscope, electromyography and VO2 wearable sensors.
    Williams G; Saiyi Li ; Pathirana PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4963-4966. PubMed ID: 28269382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure.
    Sasaki JE; Hickey A; Mavilia M; Tedesco J; John D; Kozey Keadle S; Freedson PS
    J Phys Act Health; 2015 Feb; 12(2):149-54. PubMed ID: 24770438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse association between changes in energetic cost of walking and vertical accelerations in non-metastatic breast cancer survivors.
    Carter SJ; Rogers LQ; Bowles HR; Norian LA; Hunter GR
    Eur J Appl Physiol; 2019 Dec; 119(11-12):2457-2464. PubMed ID: 31520215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds.
    Connolly DA
    J Strength Cond Res; 2002 Nov; 16(4):606-10. PubMed ID: 12423193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.