These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21690002)

  • 1. Automatic generation of boundary conditions using demons nonrigid image registration for use in 3-D modality-independent elastography.
    Pheiffer TS; Ou JJ; Ong RE; Miga MI
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2607-16. PubMed ID: 21690002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study.
    Ou JJ; Ong RE; Yankeelov TE; Miga MI
    Phys Med Biol; 2008 Jan; 53(1):147-63. PubMed ID: 18182693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
    Pan X; Liu K; Bai J; Luo J
    Biomed Eng Online; 2014 Sep; 13():132. PubMed ID: 25194553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modality independent elastography (MIE): a new approach to elasticity imaging.
    Washington CW; Miga MI
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1117-28. PubMed ID: 15377121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an improved 'diffeomorphic demons' algorithm for deformable image registration in image-guided radiation therapy.
    Zhou L; Zhou L; Zhang S; Zhen X; Yu H; Zhang G; Wang R
    Biomed Mater Eng; 2014; 24(1):373-82. PubMed ID: 24211919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ultrasound elastography inverse problem and the effective criteria.
    Aghajani A; Haghpanahi M; Nikazad T
    Proc Inst Mech Eng H; 2013 Nov; 227(11):1203-12. PubMed ID: 23921546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal subtraction contrast-enhanced dedicated breast CT.
    Gazi PM; Aminololama-Shakeri S; Yang K; Boone JM
    Phys Med Biol; 2016 Sep; 61(17):6322-46. PubMed ID: 27494376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element method to correct deformable image registration errors in low-contrast regions.
    Zhong H; Kim J; Li H; Nurushev T; Movsas B; Chetty IJ
    Phys Med Biol; 2012 Jun; 57(11):3499-515. PubMed ID: 22581269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear modulus decomposition algorithm in magnetic resonance elastography.
    Kwon OI; Park C; Nam HS; Woo EJ; Seo JK; Glaser KJ; Manduca A; Ehman RL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1526-33. PubMed ID: 19783495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel shape-similarity-based elastography technique for prostate cancer assessment.
    Mousavi SR; Wang H; Hesabgar SM; Scholl TJ; Samani A
    Med Phys; 2015 Sep; 42(9):5110-9. PubMed ID: 26328962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extra-dimensional Demons: a method for incorporating missing tissue in deformable image registration.
    Nithiananthan S; Schafer S; Mirota DJ; Stayman JW; Zbijewski W; Reh DD; Gallia GL; Siewerdsen JH
    Med Phys; 2012 Sep; 39(9):5718-31. PubMed ID: 22957637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tomography-based 3-D anisotropic elastography using boundary measurements.
    Liu Y; Sun LZ; Wang G
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1323-33. PubMed ID: 16229418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition and reconstruction conditions in silico for accurate and precise magnetic resonance elastography.
    Yue JL; Tardieu M; Julea F; Boucneau T; Sinkus R; Pellot-Barakat C; Maître X
    Phys Med Biol; 2017 Nov; 62(22):8655-8670. PubMed ID: 28980977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray elastography: a feasibility study.
    Kim GW; Han BH; Cho MH; Lee SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3513-6. PubMed ID: 19964803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MREJ: MRE elasticity reconstruction on ImageJ.
    Xiang K; Zhu XL; Wang CX; Li BN
    Comput Biol Med; 2013 Aug; 43(7):847-52. PubMed ID: 23746726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
    Lu M; Zhang H; Wang J; Yuan J; Hu Z; Liu H
    Biomed Eng Online; 2013 Aug; 12():79. PubMed ID: 23937814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2010 Mar; 29(3):746-55. PubMed ID: 20199912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.