BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 21690008)

  • 1. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color Fundus Image Guided Artery-Vein Differentiation in Optical Coherence Tomography Angiography.
    Alam M; Toslak D; Lim JI; Yao X
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4953-4962. PubMed ID: 30326063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved system for the automatic estimation of the Arteriolar-to-Venular diameter Ratio (AVR) in retinal images.
    Tramontan L; Grisan E; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3550-3. PubMed ID: 19163475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated characterization of blood vessels as arteries and veins in retinal images.
    Mirsharif Q; Tajeripour F; Pourreza H
    Comput Med Imaging Graph; 2013; 37(7-8):607-17. PubMed ID: 23849699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Update on retinal vessel structure measurement with spectral-domain optical coherence tomography.
    Zhu TP; Tong YH; Zhan HJ; Ma J
    Microvasc Res; 2014 Sep; 95():7-14. PubMed ID: 24976361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic system for the estimation of generalized arteriolar narrowing in retinal images.
    Ruggeri A; Grisan E; De Luca M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6464-7. PubMed ID: 18003505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and Grading of Hypertensive Retinopathy Using Vessels Tortuosity and Arteriovenous Ratio.
    Badawi SA; Fraz MM; Shehzad M; Mahmood I; Javed S; Mosalam E; Nileshwar AK
    J Digit Imaging; 2022 Apr; 35(2):281-301. PubMed ID: 35013827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.
    Schuster AK; Fischer JE; Vossmerbaeumer U
    Acta Ophthalmol; 2014 Feb; 92(1):e42-9. PubMed ID: 23879386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal artery-vein caliber grading using color fundus imaging.
    Bhuiyan A; Kawasaki R; Lamoureux E; Ramamohanarao K; Wong TY
    Comput Methods Programs Biomed; 2013 Jul; 111(1):104-14. PubMed ID: 23535181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support system for the preventive diagnosis of hypertensive retinopathy.
    Ortíz D; Cubides M; Suárez A; Zequera M; Quiroga J; Gómez J; Arroyo N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5649-52. PubMed ID: 21097309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric distribution of arteriovenous crossings in the normal retina.
    Weinberg DV; Egan KM; Seddon JM
    Ophthalmology; 1993 Jan; 100(1):31-6. PubMed ID: 8433824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Vision-Motivated Algorithm Allows Consistent Retinal Vessel Classification Based on Local Color Contrast for Advancing General Diagnostic Exams.
    Ivanov IV; Leitritz MA; Norrenberg LA; Völker M; Dynowski M; Ueffing M; Dietter J
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):731-8. PubMed ID: 26906159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography.
    Heitmar R; Kalitzeos AA; Patel SR; Prabhu-Das D; Cubbidge RP
    J Optom; 2015; 8(4):252-7. PubMed ID: 26386537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ECG-gating Retinal Photographs on Retinal Vessel Caliber Measurements in Subjects with and without Type 2 Diabetes.
    Lal A; Dave N; Gibbs OJ; Barry MAT; Sood A; Mitchell P; Thiagalingam A
    Curr Eye Res; 2021 Nov; 46(11):1742-1750. PubMed ID: 33960254
    [No Abstract]   [Full Text] [Related]  

  • 18. Retinal vessel measurement: comparison between observer and computer driven methods.
    Newsom RS; Sullivan PM; Rassam SM; Jagoe R; Kohner EM
    Graefes Arch Clin Exp Ophthalmol; 1992; 230(3):221-5. PubMed ID: 1597285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Changes in Retinal Vessel Diameters and Arteriovenous Ratio within 10 Days of Birth.
    Sun Y; Gong JY
    Curr Eye Res; 2023 May; 48(5):492-497. PubMed ID: 36637454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artery-vein segmentation in fundus images using a fully convolutional network.
    Hemelings R; Elen B; Stalmans I; Van Keer K; De Boever P; Blaschko MB
    Comput Med Imaging Graph; 2019 Sep; 76():101636. PubMed ID: 31288217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.