These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21690145)
1. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude. Whittaker RJ; Heil M; Waters SL Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2989-3006. PubMed ID: 21690145 [TBL] [Abstract][Full Text] [Related]
2. Fluid-body interactions: clashing, skimming, bouncing. Smith FT; Wilson PL Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):3007-24. PubMed ID: 21690146 [TBL] [Abstract][Full Text] [Related]
3. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels. Tang C; Zhu L; Akingba G; Lu XY J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249 [TBL] [Abstract][Full Text] [Related]
4. A study of the bifurcation behaviour of a model of flow through a collapsible tube. Armitstead JP; Bertram CD; Jensen OE Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267 [TBL] [Abstract][Full Text] [Related]
5. Aperiodic flow-induced oscillations of collapsible tubes: a critical reappraisal. Bertram CD; Timmer J; Müller TG; Maiwald T; Winterhalder M; Voss HU Med Eng Phys; 2004 Apr; 26(3):201-14. PubMed ID: 14984842 [TBL] [Abstract][Full Text] [Related]
6. Wave motions in a collapsible tube conveying fluid. Matsuzaki Y; Matsumoto T Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240 [TBL] [Abstract][Full Text] [Related]
8. Flutter in collapsible tubes: a theoretical model of wheezes. Grotberg JB; Gavriely N J Appl Physiol (1985); 1989 May; 66(5):2262-73. PubMed ID: 2745289 [TBL] [Abstract][Full Text] [Related]
9. Laser-Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations. Bertram CD; Diaz de Tuesta G; Nugent AH J Biomech Eng; 2001 Oct; 123(5):493-9. PubMed ID: 11601735 [TBL] [Abstract][Full Text] [Related]
10. Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Moyers-Gonzalez MA; Owens RG Biorheology; 2010; 47(1):39-71. PubMed ID: 20448297 [TBL] [Abstract][Full Text] [Related]
11. Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff. Bertram CD; Raymond CJ; Butcher KS J Biomech Eng; 1989 Aug; 111(3):185-91. PubMed ID: 2779182 [TBL] [Abstract][Full Text] [Related]
12. A new model of the vocal cords based on a collapsible tube analogy. Conrad WA Med Res Eng; 1980; 13(2):7-10. PubMed ID: 7401986 [TBL] [Abstract][Full Text] [Related]
13. Pressure-induced wall thickness variations in multi-layered wall of a pollen tube and Fourier decomposition of growth oscillations. Pietruszka M; Haduch-Sendecka A Gen Physiol Biophys; 2015 Apr; 34(2):145-56. PubMed ID: 25675387 [TBL] [Abstract][Full Text] [Related]
14. Numerical analysis for stability and self-excited oscillation in collapsible tube flow. Hayashi S; Hayase T; Kawamura H J Biomech Eng; 1998 Aug; 120(4):468-75. PubMed ID: 10412417 [TBL] [Abstract][Full Text] [Related]
15. The mathematical challenges and modelling of hydroelasticity. Korobkin A; Părău EI; Vanden-Broeck JM Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2803-12. PubMed ID: 21690134 [TBL] [Abstract][Full Text] [Related]
16. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
17. PIV measurements of the flow field just downstream of an oscillating collapsible tube. Bertram CD; Truong NK; Hall SD J Biomech Eng; 2008 Dec; 130(6):061011. PubMed ID: 19045540 [TBL] [Abstract][Full Text] [Related]
18. A mathematical model of flow in a liquid-filled visco-elastic tube. Pontrelli G Med Biol Eng Comput; 2002 Sep; 40(5):550-6. PubMed ID: 12452416 [TBL] [Abstract][Full Text] [Related]
19. Analysis of signal propagation in an elastic-tube flow model. Akman OE; Biringen S; Waggy SB Med Eng Phys; 2011 Jun; 33(5):660-3. PubMed ID: 21242097 [TBL] [Abstract][Full Text] [Related]
20. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Repetto R; Siggers JH; Stocchino A Biomech Model Mechanobiol; 2010 Feb; 9(1):65-76. PubMed ID: 19471979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]