These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2169016)

  • 1. Is intracellular sodium involved in the mechanism of tolerance to opioid drugs?
    Brase DA
    Med Hypotheses; 1990 Jul; 32(3):161-7. PubMed ID: 2169016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of G(i)alpha2-protein in opioid tolerance and mu-opioid receptor downregulation in vivo.
    Yoburn BC; Gomes BA; Rajashekara V; Patel C; Patel M
    Synapse; 2003 Feb; 47(2):109-16. PubMed ID: 12454948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence.
    Liu JG; Anand KJ
    Brain Res Brain Res Rev; 2001 Dec; 38(1-2):1-19. PubMed ID: 11750924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Opioid tolerance: what if it was just a question of receptor internalization?].
    Marie N; Jauzac P; Allouche S
    Ann Med Interne (Paris); 2003 Nov; 154 Spec No 2():S73-80. PubMed ID: 14760229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A steric theory of opioid agonists, antagonists, agonist-antagonists, and partial agonists.
    Martin WR
    NIDA Res Monogr; 1984 Mar; 49():16-23. PubMed ID: 6090916
    [No Abstract]   [Full Text] [Related]  

  • 6. Opiate tolerance and dependence: receptors, G-proteins, and antiopiates.
    Harrison LM; Kastin AJ; Zadina JE
    Peptides; 1998; 19(9):1603-30. PubMed ID: 9864069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of dopamine system in regulation of Na+,K+-ATPase in the striatum upon activation of opioid receptors by morphine.
    Wu ZQ; Chen J; Chi ZQ; Liu JG
    Mol Pharmacol; 2007 Feb; 71(2):519-30. PubMed ID: 17068092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of binding at the opioid receptor based upon an agonist/antagonist two-state model.
    Cheney BV; Lahti RA; Barsuhn C; Gay DD
    Mol Pharmacol; 1982 Sep; 22(2):349-59. PubMed ID: 6292693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute opioid receptor desensitization and tolerance: is there a link?
    Borgland SL
    Clin Exp Pharmacol Physiol; 2001 Mar; 28(3):147-54. PubMed ID: 11207668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential cross-tolerance to mu and kappa opioid agonists in morphine-tolerant rats responding under a schedule of food presentation.
    Picker MJ; Negus SS; Powell KR
    Psychopharmacology (Berl); 1991; 103(1):129-35. PubMed ID: 1848712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo receptor binding of opioid drugs at the mu site.
    Rosenbaum JS; Holford NH; Sadée W
    J Pharmacol Exp Ther; 1985 Jun; 233(3):735-40. PubMed ID: 2989495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms of opioid tolerance and the clinical approach to the opioid tolerant patient in the post-operative period.
    de Leon-Casasola OA
    Best Pract Res Clin Anaesthesiol; 2002 Dec; 16(4):521-5. PubMed ID: 12516889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous intrathecal opioid treatment abolishes the regulatory effects of magnesium and guanine nucleotides on mu opioid receptor binding in rat spinal membranes.
    Wong CS; Su YF; Watkins WD; Chang KJ
    J Pharmacol Exp Ther; 1992 Jul; 262(1):317-26. PubMed ID: 1320689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of involvement of the nNOS and the kappa-opioid receptor in the same intracellular network of the rat periaqueductal gray that controls morphine tolerance and dependence.
    Herráez-Baranda LA; Carretero J; González-Sarmiento R; Laorden ML; Milanés MV; Rodríguez RE
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):166-73. PubMed ID: 15950775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands.
    Boronat MA; Olmos G; García-Sevilla JA
    Br J Pharmacol; 1998 Sep; 125(1):175-85. PubMed ID: 9776358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mu opioid receptors participate in the excitatory effect of opiates in the hippocampal slice.
    Bostock E; Dingledine R; Xu G; Chang KJ
    J Pharmacol Exp Ther; 1984 Dec; 231(3):512-7. PubMed ID: 6094789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid tolerance and the emergence of new opioid receptor-coupled signaling.
    Gintzler AR; Chakrabarti S
    Mol Neurobiol; 2000; 21(1-2):21-33. PubMed ID: 11327148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence.
    Law PY; Loh HH; Wei LN
    Neuropharmacology; 2004; 47 Suppl 1():300-11. PubMed ID: 15464146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurobiological mechanisms of opioid tolerance and dependence.
    Collin E; Cesselin F
    Clin Neuropharmacol; 1991 Dec; 14(6):465-88. PubMed ID: 1663419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of the opioid receptor complex by the chronic administration of morphine: a biochemical marker related to the development of tolerance and dependence.
    Rothman RB; Long JB; Bykov V; Xu H; Jacobson AE; Rice KC; Holaday JW
    Peptides; 1991; 12(1):151-60. PubMed ID: 1646998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.