These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 21690404)

  • 81. Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI.
    Dastpeyman M; Motamed N; Azadmanesh K; Mostafavi E; Kia V; Jahanian-Najafabadi A; Shokrgozar MA
    Med Oncol; 2012 Dec; 29(4):2512-8. PubMed ID: 22101790
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.
    Zhao F; Li L; Guan L; Yang H; Wu C; Liu Y
    Cancer Lett; 2014 Mar; 344(1):62-73. PubMed ID: 24176823
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens.
    Popova SN; Rodriguez-Sánchez B; Lidén A; Betsholtz C; Van Den Bos T; Gullberg D
    Dev Biol; 2004 Jun; 270(2):427-42. PubMed ID: 15183724
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.
    Tejchman A; Lamerant-Fayel N; Jacquinet JC; Bielawska-Pohl A; Mleczko-Sanecka K; Grillon C; Chouaib S; Ugorski M; Kieda C
    Oncotarget; 2017 May; 8(19):31876-31887. PubMed ID: 28416768
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells.
    Timoshenko AV; Rastogi S; Lala PK
    Br J Cancer; 2007 Oct; 97(8):1090-8. PubMed ID: 17912247
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Topotecan inhibits cancer cell migration by down-regulation of chemokine CC motif receptor 7 and matrix metalloproteinases.
    Lin SS; Sun L; Zhang YK; Zhao RP; Liang WL; Yuan ST; Zhang LY
    Acta Pharmacol Sin; 2009 May; 30(5):628-36. PubMed ID: 19363519
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A contact line pinning based microfluidic platform for modelling physiological flows.
    Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M
    Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis.
    Spencer A; Spruell C; Nandi S; Wong M; Creixell M; Baker AB
    Lab Chip; 2016 Jan; 16(1):142-52. PubMed ID: 26584160
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A microfluidic device inspired by leaky tumor vessels for hematogenous metastasis mechanism research.
    Yin S; Lu R; Li Y; Sun D; Liu C; Liu B; Li J
    Analyst; 2023 Mar; 148(7):1570-1578. PubMed ID: 36892183
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Further Evidence that Gradients of Extracellular pH Direct Migration of MDA-MB-231 Cells In Vitro.
    Hada Y; Yamaguchi D; Yamaoka Y; Takahashi E
    Adv Exp Med Biol; 2022; 1395():373-378. PubMed ID: 36527665
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites.
    Dimitriou NM; Flores-Torres S; Kyriakidou M; Kinsella JM; Mitsis GD
    PLoS Comput Biol; 2024 Jun; 20(6):e1012112. PubMed ID: 38861575
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.
    Tien J; Truslow JG; Nelson CM
    PLoS One; 2012; 7(9):e45191. PubMed ID: 23028839
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments.
    Prentice-Mott HV; Chang CH; Mahadevan L; Mitchison TJ; Irimia D; Shah JV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21006-11. PubMed ID: 24324148
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A facile fluid pressure system reveals differential cellular response to interstitial pressure gradients and flow.
    Wang H; Lu J; Rathod M; Aw WY; Huang SA; Polacheck WJ
    Biomicrofluidics; 2023 Sep; 17(5):054103. PubMed ID: 37781136
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform.
    Hajal C; Ibrahim L; Serrano JC; Offeddu GS; Kamm RD
    Biomaterials; 2021 Jan; 265():120470. PubMed ID: 33190735
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Collective effects in flow-driven cell migration.
    González L; Mugler A
    Phys Rev E; 2023 Nov; 108(5-1):054406. PubMed ID: 38115469
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer.
    Nævdal G; Rofstad EK; Søreide K; Evje S
    J Biomech; 2022 Dec; 145():111362. PubMed ID: 36368256
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity.
    Moure A; Vilanova G; Gomez H
    Sci Rep; 2022 Mar; 12(1):4237. PubMed ID: 35273299
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A mathematical model for mesenchymal and chemosensitive cell dynamics.
    Häcker A
    J Math Biol; 2012 Jan; 64(1-2):361-401. PubMed ID: 21437671
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of capillary fluid flow on single cancer cell cycle dynamics, motility, volume and morphology.
    Taïeb HM; Herment G; Robinson T; Cipitria A
    Lab Chip; 2022 Dec; 23(1):92-105. PubMed ID: 36448429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.