These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 21690404)

  • 101. Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer.
    Nævdal G; Rofstad EK; Søreide K; Evje S
    J Biomech; 2022 Dec; 145():111362. PubMed ID: 36368256
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity.
    Moure A; Vilanova G; Gomez H
    Sci Rep; 2022 Mar; 12(1):4237. PubMed ID: 35273299
    [TBL] [Abstract][Full Text] [Related]  

  • 103. A mathematical model for mesenchymal and chemosensitive cell dynamics.
    Häcker A
    J Math Biol; 2012 Jan; 64(1-2):361-401. PubMed ID: 21437671
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Effect of capillary fluid flow on single cancer cell cycle dynamics, motility, volume and morphology.
    Taïeb HM; Herment G; Robinson T; Cipitria A
    Lab Chip; 2022 Dec; 23(1):92-105. PubMed ID: 36448429
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Autologous chemotaxis at high cell density.
    Vennettilli M; González L; Hilgert N; Mugler A
    Phys Rev E; 2022 Aug; 106(2-1):024413. PubMed ID: 36109906
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Interstitial Hypertension Suppresses Escape of Human Breast Tumor Cells
    Tien J; Dance YW; Ghani U; Seibel AJ; Nelson CM
    Cell Mol Bioeng; 2021 Apr; 14(2):147-159. PubMed ID: 33868497
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Interstitial fluid flow in cancer: implications for disease progression and treatment.
    Munson JM; Shieh AC
    Cancer Manag Res; 2014; 6():317-28. PubMed ID: 25170280
    [TBL] [Abstract][Full Text] [Related]  

  • 108. TISSUE ENGINEERING PERFUSABLE CANCER MODELS.
    Fong EL; Santoro M; Farach-Carson MC; Kasper FK; Mikos AG
    Curr Opin Chem Eng; 2014 Feb; 3():112-117. PubMed ID: 24634812
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Mechanotransduction of fluid stresses governs 3D cell migration.
    Polacheck WJ; German AE; Mammoto A; Ingber DE; Kamm RD
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2447-52. PubMed ID: 24550267
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.
    Haessler U; Teo JC; Foretay D; Renaud P; Swartz MA
    Integr Biol (Camb); 2012 Apr; 4(4):401-9. PubMed ID: 22143066
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function.
    Zervantonakis IK; Hughes-Alford SK; Charest JL; Condeelis JS; Gertler FB; Kamm RD
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13515-20. PubMed ID: 22869695
    [TBL] [Abstract][Full Text] [Related]  

  • 112. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.
    Bersini S; Jeon JS; Dubini G; Arrigoni C; Chung S; Charest JL; Moretti M; Kamm RD
    Biomaterials; 2014 Mar; 35(8):2454-61. PubMed ID: 24388382
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity.
    Swartz MA; Lund AW
    Nat Rev Cancer; 2012 Feb; 12(3):210-9. PubMed ID: 22362216
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Mechanical compression drives cancer cells toward invasive phenotype.
    Tse JM; Cheng G; Tyrrell JA; Wilcox-Adelman SA; Boucher Y; Jain RK; Munn LL
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):911-6. PubMed ID: 22203958
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Decoding physical principles of cell migration under controlled environment using microfluidics.
    Suh YJ; Li AT; Pandey M; Nordmann CS; Huang YL; Wu M
    Biophys Rev (Melville); 2024 Sep; 5(3):031302. PubMed ID: 39091432
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications.
    Ryoo H; Kimmel H; Rondo E; Underhill GH
    Bioeng Transl Med; 2024 May; 9(3):e10627. PubMed ID: 38818120
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Interstitial Fluid Shear Stress Induces the Synthetic Phenotype Switching of VSMCs to Release Pro-calcified Extracellular Vesicles via EGFR-MAPK-KLF5 Pathway.
    Gao W; Gu K; Ma L; Yang F; Deng L; Zhang Y; Miao MZ; Li W; Li G; Qian H; Zhang Z; Wang G; Yu H; Liu X
    Int J Biol Sci; 2024; 20(7):2727-2747. PubMed ID: 38725857
    [TBL] [Abstract][Full Text] [Related]  

  • 119. State of the Art in 3D Culture Models Applied to Thyroid Cancer.
    Prete A; Matrone A; Plebani R
    Medicina (Kaunas); 2024 Mar; 60(4):. PubMed ID: 38674166
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Using a probabilistic approach to derive a two-phase model of flow-induced cell migration.
    Ben-Ami Y; Pitt-Francis JM; Maini PK; Byrne HM
    Biophys J; 2024 Apr; 123(7):799-813. PubMed ID: 38414238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.