These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 21690959)
1. Effects induced by Mie resonance in two-dimensional photonic crystals. Shi L; Jiang X; Li C J Phys Condens Matter; 2007 Apr; 19(17):176214. PubMed ID: 21690959 [TBL] [Abstract][Full Text] [Related]
2. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast. Chern RL; Chao SD Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769 [TBL] [Abstract][Full Text] [Related]
3. Mie resonances and Bragg-like multiple scattering in opacity of two-dimensional photonic crystals. Barabanenkov YN; Barabanenkov MY J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):581-5. PubMed ID: 16539054 [TBL] [Abstract][Full Text] [Related]
4. Zigzag graphene nanoribbons: bandgap and midgap state modulation. Raza H J Phys Condens Matter; 2011 Sep; 23(38):382203. PubMed ID: 21891831 [TBL] [Abstract][Full Text] [Related]
5. Anomalous patterned scattering spectra of one-dimensional porous silicon photonic crystals. de la Mora MB; del Río JA; Nava R; Tagüeña-Martínez J; Reyes-Esqueda JA; Kavokin A; Faubert J; Lugo JE Opt Express; 2010 Oct; 18(22):22808-16. PubMed ID: 21164619 [TBL] [Abstract][Full Text] [Related]
6. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Degirmenci E; Landais P Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592 [TBL] [Abstract][Full Text] [Related]
7. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals. Kushwaha MS; Martinez G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461 [TBL] [Abstract][Full Text] [Related]
8. Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals. Takeda H; Yoshino K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056607. PubMed ID: 12786296 [TBL] [Abstract][Full Text] [Related]
9. Photonic band gap enhancement in frequency-dependent dielectrics. Toader O; John S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Mohammadi S; Eftekhar AA; Khelif A; Adibi A Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763 [TBL] [Abstract][Full Text] [Related]
11. Enhanced photonic band-gap confinement via Van Hove saddle point singularities. Ibanescu M; Reed EJ; Joannopoulos JD Phys Rev Lett; 2006 Jan; 96(3):033904. PubMed ID: 16486702 [TBL] [Abstract][Full Text] [Related]
12. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis. Park JH; Choi WS; Koo HY; Hong JC; Kim DY Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406 [TBL] [Abstract][Full Text] [Related]
13. Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering. Giden IH; Kurt H Appl Opt; 2012 Mar; 51(9):1287-96. PubMed ID: 22441474 [TBL] [Abstract][Full Text] [Related]
14. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals. Toader O; John S Science; 2001 May; 292(5519):1133-5. PubMed ID: 11349142 [TBL] [Abstract][Full Text] [Related]
15. Peculiarities of the band structure of multi-component photonic crystals with different dimensions. Samusev AK; Samusev KB; Rybin MV; Limonov MF J Phys Condens Matter; 2010 Mar; 22(11):115401. PubMed ID: 21389463 [TBL] [Abstract][Full Text] [Related]
16. Nonspherical ZnS colloidal building blocks for three-dimensional photonic crystals. Liddell CM; Summers CJ J Colloid Interface Sci; 2004 Jun; 274(1):103-6. PubMed ID: 15120283 [TBL] [Abstract][Full Text] [Related]
17. Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals. Chen Z; Han P; Leung CW; Wang Y; Hu M; Chen Y Opt Express; 2012 Sep; 20(19):21618-26. PubMed ID: 23037280 [TBL] [Abstract][Full Text] [Related]
19. Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal. Husaini S; Deych L; Menon VM Opt Lett; 2011 Apr; 36(8):1368-70. PubMed ID: 21499359 [TBL] [Abstract][Full Text] [Related]
20. Effective medium theory applied to photonic crystals composed of cubic or square cylinders. Lalanne P Appl Opt; 1996 Sep; 35(27):5369-80. PubMed ID: 21127532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]