These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21691005)

  • 1. Suppression of electron relaxation and dephasing rates in quantum dots caused by external magnetic fields.
    Stavrou VN
    J Phys Condens Matter; 2007 May; 19(18):186224. PubMed ID: 21691005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angle-dependent decoherence of charge qubits in free-standing slabs.
    Liao YY; Chen YN; Jian SR
    J Phys Condens Matter; 2010 Feb; 22(4):045301. PubMed ID: 21386309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-monotonic variation of the exchange energy in double elliptic quantum dots.
    Zhang LX; Melnikov DV; Leburton JP
    J Phys Condens Matter; 2009 Mar; 21(9):095502. PubMed ID: 21817399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the exchange interaction by an electric field in laterally coupled quantum dots.
    Kwaśniowski A; Adamowski J
    J Phys Condens Matter; 2009 Jun; 21(23):235601. PubMed ID: 21825588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin qubits: spin relaxation in coupled quantum dots.
    Stavrou VN
    J Phys Condens Matter; 2018 Nov; 30(45):455301. PubMed ID: 30265244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions.
    Uskov AV; Jauho A; Tromborg B; Mork J; Lang R
    Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical phases of excitonic qubits in quantum dots.
    Thilagam A
    J Phys Condens Matter; 2009 Jan; 21(4):045504. PubMed ID: 21715810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of spin relaxation in two-electron lateral coupled quantum dots.
    Raith M; Stano P; Baruffa F; Fabian J
    Phys Rev Lett; 2012 Jun; 108(24):246602. PubMed ID: 23004302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of phonon-induced spin relaxation in laterally coupled quantum dots.
    Stano P; Fabian J
    Phys Rev Lett; 2006 May; 96(18):186602. PubMed ID: 16712384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots.
    Reigue A; Iles-Smith J; Lux F; Monniello L; Bernard M; Margaillan F; Lemaitre A; Martinez A; McCutcheon DPS; Mørk J; Hostein R; Voliotis V
    Phys Rev Lett; 2017 Jun; 118(23):233602. PubMed ID: 28644642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dots and spin qubits in graphene.
    Recher P; Trauzettel B
    Nanotechnology; 2010 Jul; 21(30):302001. PubMed ID: 20603538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of exciton energy levels in laterally coupled quantum dots.
    Barticevic Z; Pacheco M; Duque CA; Oliveira LE
    J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of applied electric and magnetic fields on a donor impurity in laterally coupled quantum dots.
    Ulloa P; Pacheco M; Barticevic Z; Oliveira LE
    J Phys Condens Matter; 2011 Aug; 23(32):325301. PubMed ID: 21795781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of decoherence tied to electron-phonon coupling in telecom-compatible quantum dots: low-threshold reappearance regime for quantum state inversion.
    Ramachandran A; Wilbur GR; O'Neal S; Deppe DG; Hall KC
    Opt Lett; 2020 Dec; 45(23):6498-6501. PubMed ID: 33258845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.