BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21691621)

  • 1. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.
    Woronowicz K; Sha D; Frese RN; Sturgis JN; Nanda V; Niederman RA
    Metallomics; 2011 Aug; 3(8):765-74. PubMed ID: 21691621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers.
    Woronowicz K; Sha D; Frese RN; Niederman RA
    Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.
    Sturgis JN; Niederman RA
    Photosynth Res; 2008; 95(2-3):269-78. PubMed ID: 17922302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confinement of cardiolipin and ubiquinone in reaction-center core complexes purified from the photosynthetic bacterium Rhodobacter sphaeroides.
    Dezi M; Francia F; Mallardi A; Palazzo G; Venturoli G
    Ital J Biochem; 2007 Dec; 56(4):259-64. PubMed ID: 19192623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.
    Niederman RA
    Biochim Biophys Acta; 2016 Mar; 1857(3):232-46. PubMed ID: 26519773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods.
    D'Amici GM; Rinalducci S; Murgiano L; Italiano F; Zolla L
    J Proteome Res; 2010 Jan; 9(1):192-203. PubMed ID: 19899738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex.
    Crouch LI; Jones MR
    Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex.
    Francia F; Wang J; Venturoli G; Melandri BA; Barz WP; Oesterhelt D
    Biochemistry; 1999 May; 38(21):6834-45. PubMed ID: 10346905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native architecture of the photosynthetic membrane from Rhodobacter veldkampii.
    Liu LN; Sturgis JN; Scheuring S
    J Struct Biol; 2011 Jan; 173(1):138-45. PubMed ID: 20797440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study.
    de Rivoyre M; Ginet N; Bouyer P; Lavergne J
    Biochim Biophys Acta; 2010 Nov; 1797(11):1780-94. PubMed ID: 20655292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides: II. A study of PufX- membranes.
    Comayras F; Jungas C; Lavergne J
    J Biol Chem; 2005 Mar; 280(12):11214-23. PubMed ID: 15632163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum.
    Gonçalves RP; Bernadac A; Sturgis JN; Scheuring S
    J Struct Biol; 2005 Dec; 152(3):221-8. PubMed ID: 16330228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective assembly of photosynthetic antenna proteins into a domain-structured lipid bilayer for the construction of artificial photosynthetic antenna systems: structural analysis of the assembly using surface plasmon resonance and atomic force microscopy.
    Sumino A; Dewa T; Kondo M; Morii T; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M
    Langmuir; 2011 Feb; 27(3):1092-9. PubMed ID: 21204531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus.
    Mascle-Allemand C; Lavergne J; Bernadac A; Sturgis JN
    Biochim Biophys Acta; 2008 Dec; 1777(12):1552-9. PubMed ID: 18948077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A.
    Walz T; Jamieson SJ; Bowers CM; Bullough PA; Hunter CN
    J Mol Biol; 1998 Oct; 282(4):833-45. PubMed ID: 9743630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.