BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21691849)

  • 21. A dynamical system that describes vein graft adaptation and failure.
    Garbey M; Berceli SA
    J Theor Biol; 2013 Nov; 336():209-20. PubMed ID: 23871714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension.
    Dobrin PB
    Hypertension; 1995 Jul; 26(1):38-43. PubMed ID: 7607730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamically driven vein graft remodeling: a systems biology approach.
    Berceli SA; Tran-Son-Tay R; Garbey M; Jiang Z
    Vascular; 2009; 17 Suppl 1(Suppl 1):S2-9. PubMed ID: 19426605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lack of interleukin-1 signaling results in perturbed early vein graft wall adaptations.
    Yu P; Nguyen BT; Tao M; Jiang T; Mauro CR; Wang Y; Ozaki CK
    Surgery; 2013 Jan; 153(1):63-9. PubMed ID: 22853857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of shear stress on early vein graft remodeling: a biomechanical analysis.
    Fernandez CM; Goldman DR; Jiang Z; Ozaki CK; Tran-Son-Tay R; Berceli SA
    Ann Biomed Eng; 2004 Nov; 32(11):1484-93. PubMed ID: 15636109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts.
    Kissin M; Kansal N; Pappas PJ; DeFouw DO; Durán WN; Hobson RW
    J Vasc Surg; 2000 Jan; 31(1 Pt 1):69-83. PubMed ID: 10642710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new outside stent--does it prevent vein graft intimal proliferation?
    Krejca M; Skarysz J; Szmagala P; Plewka D; Nowaczyk G; Plewka A; Bochenek A
    Eur J Cardiothorac Surg; 2002 Dec; 22(6):898-903. PubMed ID: 12467811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of high hemodynamics upon the morphology of the walls of the great saphenous vein and splenic vein.
    Xu Y; Bian X; Chu H; Zhao J; Wang T; Tang J; Guo W; Zhang S
    Int Angiol; 2014 Jun; 33(3):292-8. PubMed ID: 24936536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localized versus systemic angiotensin II receptor inhibition of intimal hyperplasia in experimental vein grafts by the specific angiotensin II receptor inhibitor L158,809.
    Fulton GJ; Davies MG; Barber L; Svendsen E; Hagen PO
    Surgery; 1998 Feb; 123(2):218-27. PubMed ID: 9481409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts.
    Banno H; Takei Y; Muramatsu T; Komori K; Kadomatsu K
    J Vasc Surg; 2006 Sep; 44(3):633-41. PubMed ID: 16950446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wall shear modulation of cytokines in early vein grafts.
    Jiang Z; Berceli SA; Pfahnl CL; Wu L; Goldman D; Tao M; Kagayama M; Matsukawa A; Ozaki CK
    J Vasc Surg; 2004 Aug; 40(2):345-50. PubMed ID: 15297832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time course of the regression of intimal hyperplasia in experimental vein grafts.
    Davies MG; Fulton GJ; Svendsen E; Hagen PO
    Cardiovasc Pathol; 1999; 8(3):161-8. PubMed ID: 10722239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydraulic conductivity and low-density lipoprotein transport of the venous graft wall in an arterial bypass.
    Wang Z; Liu M; Liu X; Sun A; Fan Y; Deng X
    Biomed Eng Online; 2019 Apr; 18(1):50. PubMed ID: 31023303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamic parameters and early intimal thickening in branching blood vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extravascular perivenous fibrin support leads to aneurysmal degeneration and intimal hyperplasia in arterialized vein grafts in the rat.
    Stojanovic T; El-Sayed Ahmad A; Didilis V; Ali O; Popov AF; Danner BC; Seipelt R; Dörge H; Schöndube FA
    Langenbecks Arch Surg; 2009 Mar; 394(2):357-62. PubMed ID: 18509670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Pathway for macrophage invasion into the tunica media and the intima in vein graft].
    Wu XQ; Cai WJ; Luo XG
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2005 Apr; 30(2):179-82. PubMed ID: 15898429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.