These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21692182)

  • 1. Carbon-nanotube through-silicon via interconnects for three-dimensional integration.
    Wang T; Jeppson K; Ye L; Liu J
    Small; 2011 Aug; 7(16):2313-7. PubMed ID: 21692182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects.
    Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Through silicon vias filled with planarized carbon nanotube bundles.
    Wang T; Jeppson K; Olofsson N; Campbell EE; Liu J
    Nanotechnology; 2009 Dec; 20(48):485203. PubMed ID: 19887710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube growth for through silicon via application.
    Xie R; Zhang C; van der Veen MH; Arstila K; Hantschel T; Chen B; Zhong G; Robertson J
    Nanotechnology; 2013 Mar; 24(12):125603. PubMed ID: 23466644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Interconnects Realized through Functionalization and Sintered Silver Attachment.
    Gopee V; Thomas O; Hunt C; Stolojan V; Allam J; Silva SR
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5563-70. PubMed ID: 26835786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.
    Schulze A; Hantschel T; Dathe A; Eyben P; Ke X; Vandervorst W
    Nanotechnology; 2012 Aug; 23(30):305707. PubMed ID: 22781880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.
    Awad I; Ladani L
    Nanotechnology; 2015 Dec; 26(48):485705. PubMed ID: 26559788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts.
    Jiang Y; Wang P; Lin L
    Nanotechnology; 2011 Sep; 22(36):365704. PubMed ID: 21836331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of Joule heating-induced breakdown of carbon nanotube interconnects.
    Santini CA; Vereecken PM; Volodin A; Groeseneken G; De Gendt S; Haesendonck CV
    Nanotechnology; 2011 Sep; 22(39):395202. PubMed ID: 21891859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.
    Abdolahad M; Taghinejad M; Taghinejad H; Janmaleki M; Mohajerzadeh S
    Lab Chip; 2012 Mar; 12(6):1183-90. PubMed ID: 22294045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip.
    Ma Z; Yang L; Liu L; Wang S; Peng LM
    ACS Nano; 2020 Jun; 14(6):7191-7199. PubMed ID: 32422043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowelding of carbon nanotube-metal contacts: an effective way to control the Schottky barrier and performance of carbon nanotube based field effect transistors.
    Nurbawono A; Zhang A; Cai Y; Wu Y; Feng YP; Zhang C
    J Chem Phys; 2012 May; 136(17):174704. PubMed ID: 22583262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress and Challenges Regarding Carbon Nanotube On-Chip Interconnects.
    Xu B; Chen R; Zhou J; Liang J
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers.
    Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY
    Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography.
    Mogensen KB; Chen M; Molhave K; Boggild P; Kutter JP
    Lab Chip; 2011 Jun; 11(12):2116-8. PubMed ID: 21547314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.
    Yuan D; Lin W; Guo R; Wong CP; Das S
    Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors.
    Jang CO; Kim TH; Lee SY; Kim DJ; Lee SK
    Nanotechnology; 2008 Aug; 19(34):345203. PubMed ID: 21730641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling.
    Choi YM; Choo H; Yeo H; You NH; Lee DS; Ku BC; Kim HC; Bong PH; Jeong Y; Goh M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7726-30. PubMed ID: 23947825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.