These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21692223)

  • 1. [Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation].
    Lukianova LD
    Patol Fiziol Eksp Ter; 2011; (1):3-19. PubMed ID: 21692223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mithochondria signaling in adaptation to hypoxia].
    Luk'ianova LD
    Fiziol Zh (1994); 2013; 59(6):141-54. PubMed ID: 24605602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Succinate in Regulation of Immediate HIF-1α Expression in Hypoxia.
    Lukyanova LD; Kirova YI; Germanova EL
    Bull Exp Biol Med; 2018 Jan; 164(3):298-303. PubMed ID: 29308570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia.
    Lukyanova LD; Kirova YI
    Front Neurosci; 2015; 9():320. PubMed ID: 26483619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium.
    Germanova E; Khmil N; Pavlik L; Mikheeva I; Mironova G; Lukyanova L
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.
    Tretter L; Patocs A; Chinopoulos C
    Biochim Biophys Acta; 2016 Aug; 1857(8):1086-1101. PubMed ID: 26971832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular mechanisms of hypoxia and adaptation to it. Part II].
    Prikhodko VA; Selizarova NO; Okovityi SV
    Arkh Patol; 2021; 83(3):62-69. PubMed ID: 34041899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate: a metabolic signal in inflammation.
    Mills E; O'Neill LA
    Trends Cell Biol; 2014 May; 24(5):313-20. PubMed ID: 24361092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular mechanisms for hypoxia development and adaptation to it. Part I].
    Prikhodko VA; Selizarova NO; Okovityi SV
    Arkh Patol; 2021; 83(3):52-61. PubMed ID: 33822555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple faces of succinate beyond metabolism in blood.
    Grimolizzi F; Arranz L
    Haematologica; 2018 Oct; 103(10):1586-1592. PubMed ID: 29954939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fed mice.
    Xiao N; Lou MD; Lu YT; Yang LL; Liu Q; Liu B; Qi LW; Li P
    Diabetologia; 2017 Jun; 60(6):1084-1093. PubMed ID: 28280902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of hypoxia-inducible factor-1 subunits from Ascaris suum - a parasitic nematode highly adapted to changes of oxygen conditions during its life cycle.
    Goto M; Amino H; Nakajima M; Tsuji N; Sakamoto K; Kita K
    Gene; 2013 Mar; 516(1):39-47. PubMed ID: 23268347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia and aerobic metabolism adaptations of human endothelial cells.
    Koziel A; Jarmuszkiewicz W
    Pflugers Arch; 2017 Jun; 469(5-6):815-827. PubMed ID: 28176017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin inhibits hepatic stellate cell activation via suppression of succinate-associated HIF-1α induction.
    She L; Xu D; Wang Z; Zhang Y; Wei Q; Aa J; Wang G; Liu B; Xie Y
    Mol Cell Endocrinol; 2018 Nov; 476():129-138. PubMed ID: 29746885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor.
    Wu JY; Huang TW; Hsieh YT; Wang YF; Yen CC; Lee GL; Yeh CC; Peng YJ; Kuo YY; Wen HT; Lin HC; Hsiao CW; Wu KK; Kung HJ; Hsu YJ; Kuo CC
    Mol Cell; 2020 Jan; 77(2):213-227.e5. PubMed ID: 31735641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery.
    Hamel D; Sanchez M; Duhamel F; Roy O; Honoré JC; Noueihed B; Zhou T; Nadeau-Vallée M; Hou X; Lavoie JC; Mitchell G; Mamer OA; Chemtob S
    Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):285-93. PubMed ID: 24285580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of HIF-1 signaling pathway in Pelteobagrus vachelli using RNA-Seq: effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices.
    Zhang G; Zhao C; Wang Q; Gu Y; Li Z; Tao P; Chen J; Yin S
    J Comp Physiol B; 2017 Oct; 187(7):931-943. PubMed ID: 28353178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of hypoxia on dynamics of HIF-1alpha level in the cerebral cortex and development of adaptation in rats with different resistance to hypoxia].
    Kirova IuI
    Patol Fiziol Eksp Ter; 2012; (3):51-5. PubMed ID: 23072112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type II Fp of human mitochondrial respiratory complex II and its role in adaptation to hypoxia and nutrition-deprived conditions.
    Sakai C; Tomitsuka E; Miyagishi M; Harada S; Kita K
    Mitochondrion; 2013 Nov; 13(6):602-9. PubMed ID: 24008124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Succinate as a signaling molecule in the mediation of liver diseases.
    Chen H; Jin C; Xie L; Wu J
    Biochim Biophys Acta Mol Basis Dis; 2024 Feb; 1870(2):166935. PubMed ID: 37976628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.