BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21692505)

  • 1. Isotope-edited FTIR of alkaline phosphatase resolves paradoxical ligand binding properties and suggests a role for ground-state destabilization.
    Andrews LD; Deng H; Herschlag D
    J Am Chem Soc; 2011 Aug; 133(30):11621-31. PubMed ID: 21692505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.
    Andrews LD; Fenn TD; Herschlag D
    PLoS Biol; 2013 Jul; 11(7):e1001599. PubMed ID: 23843744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase.
    Peck A; Sunden F; Andrews LD; Pande VS; Herschlag D
    J Mol Biol; 2016 Jul; 428(13):2758-68. PubMed ID: 27189921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
    O'Brien PJ; Herschlag D
    Biochemistry; 2002 Mar; 41(9):3207-25. PubMed ID: 11863460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study.
    Zhang H; Yang L; Ding W; Ma Y
    J Biol Inorg Chem; 2018 Mar; 23(2):277-284. PubMed ID: 29290009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
    Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC
    J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do electrostatic interactions with positively charged active site groups tighten the transition state for enzymatic phosphoryl transfer?
    Nikolic-Hughes I; Rees DC; Herschlag D
    J Am Chem Soc; 2004 Sep; 126(38):11814-9. PubMed ID: 15382915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions.
    Nikolic-Hughes I; O'brien PJ; Herschlag D
    J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
    Zalatan JG; Herschlag D
    J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.
    Chen SL; Liao RZ
    Chemphyschem; 2014 Aug; 15(11):2321-30. PubMed ID: 24683174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase.
    O'Brien PJ; Lassila JK; Fenn TD; Zalatan JG; Herschlag D
    Biochemistry; 2008 Jul; 47(29):7663-72. PubMed ID: 18627128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D structure of a mutant (Asp101-->Ser) of E.coli alkaline phosphatase with higher catalytic activity.
    Chen L; Neidhart D; Kohlbrenner WM; Mandecki W; Bell S; Sowadski J; Abad-Zapatero C
    Protein Eng; 1992 Oct; 5(7):605-10. PubMed ID: 1480614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.
    Roston D; Cui Q
    J Am Chem Soc; 2016 Sep; 138(36):11946-57. PubMed ID: 27541005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.