BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21692516)

  • 1. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.
    Stanley JR; Adkins JN; Slysz GW; Monroe ME; Purvine SO; Karpievitch YV; Anderson GA; Smith RD; Dabney AR
    Anal Chem; 2011 Aug; 83(16):6135-40. PubMed ID: 21692516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of strategies for obtaining confident identifications in bottom-up proteomics measurements using hybrid FTMS instruments.
    Tolmachev AV; Monroe ME; Purvine SO; Moore RJ; Jaitly N; Adkins JN; Anderson GA; Smith RD
    Anal Chem; 2008 Nov; 80(22):8514-25. PubMed ID: 18855412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry.
    Strittmatter EF; Ferguson PL; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2003 Sep; 14(9):980-91. PubMed ID: 12954166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian approach to peptide identification using accurate mass and time tags from LC-FTICR-MS proteomics experiments.
    Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3775-8. PubMed ID: 19163533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generating function approach for Peptide identification in spectral networks.
    Guthals A; Boucher C; Bandeira N
    J Comput Biol; 2015 May; 22(5):353-66. PubMed ID: 25423621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics.
    Wu C; Monroe ME; Xu Z; Slysz GW; Payne SH; Rodland KD; Liu T; Smith RD
    J Am Soc Mass Spectrom; 2015 Dec; 26(12):2002-8. PubMed ID: 26015166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.
    Agron IA; Avtonomov DM; Kononikhin AS; Popov IA; Moshkovskii SA; Nikolaev EN
    Biochemistry (Mosc); 2010 May; 75(5):636-41. PubMed ID: 20632944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quality assessments of peptide-spectrum matches in shotgun proteomics.
    Granholm V; Käll L
    Proteomics; 2011 Mar; 11(6):1086-93. PubMed ID: 21365749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.
    Kwon T; Choi H; Vogel C; Nesvizhskii AI; Marcotte EM
    J Proteome Res; 2011 Jul; 10(7):2949-58. PubMed ID: 21488652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.
    Perez-Riverol Y; Wang R; Hermjakob H; Müller M; Vesada V; Vizcaíno JA
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt A):63-76. PubMed ID: 23467006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of software tools for design and analysis of large scale MRM proteomic datasets.
    Colangelo CM; Chung L; Bruce C; Cheung KH
    Methods; 2013 Jun; 61(3):287-98. PubMed ID: 23702368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical identification of differentially labeled peptides from liquid chromatography tandem mass spectrometry.
    Cho H; Smalley DM; Theodorescu D; Ley K; Lee JK
    Proteomics; 2007 Oct; 7(20):3681-92. PubMed ID: 17879999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases.
    Kim S; Gupta N; Pevzner PA
    J Proteome Res; 2008 Aug; 7(8):3354-63. PubMed ID: 18597511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring.
    Dworzanski JP; Snyder AP; Chen R; Zhang H; Wishart D; Li L
    Anal Chem; 2004 Apr; 76(8):2355-66. PubMed ID: 15080748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of False Discovery Rate for Peptide and Protein Identification.
    Prieto G; Vázquez J
    Methods Mol Biol; 2020; 2051():145-159. PubMed ID: 31552628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generic workflow for quality assessment of quantitative label-free LC-MS analysis.
    Sandin M; Krogh M; Hansson K; Levander F
    Proteomics; 2011 Mar; 11(6):1114-24. PubMed ID: 21298787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet.
    Ma K; Vitek O; Nesvizhskii AI
    BMC Bioinformatics; 2012; 13 Suppl 16(Suppl 16):S1. PubMed ID: 23176103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A platform for accurate mass and time analyses of mass spectrometry data.
    May D; Fitzgibbon M; Liu Y; Holzman T; Eng J; Kemp CJ; Whiteaker J; Paulovich A; McIntosh M
    J Proteome Res; 2007 Jul; 6(7):2685-94. PubMed ID: 17559252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.