These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2169270)
1. Localization of the alpha 1 and alpha 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Flucher BE; Morton ME; Froehner SC; Daniels MP Neuron; 1990 Sep; 5(3):339-51. PubMed ID: 2169270 [TBL] [Abstract][Full Text] [Related]
2. Dihydropyridine receptor alpha subunits in normal and dysgenic muscle in vitro: expression of alpha 1 is required for proper targeting and distribution of alpha 2. Flucher BE; Phillips JL; Powell JA J Cell Biol; 1991 Dec; 115(5):1345-56. PubMed ID: 1659576 [TBL] [Abstract][Full Text] [Related]
3. Co-localization of the dihydropyridine receptor and the cyclic AMP-binding subunit of an intrinsic protein kinase to the junctional membrane of the transverse tubules of skeletal muscle. Salvatori S; Damiani E; Barhanin J; Furlan S; Salviati G; Margreth A Biochem J; 1990 May; 267(3):679-87. PubMed ID: 2160233 [TBL] [Abstract][Full Text] [Related]
4. Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. Yuan SH; Arnold W; Jorgensen AO J Cell Biol; 1991 Jan; 112(2):289-301. PubMed ID: 1846372 [TBL] [Abstract][Full Text] [Related]
5. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. Block BA; Imagawa T; Campbell KP; Franzini-Armstrong C J Cell Biol; 1988 Dec; 107(6 Pt 2):2587-600. PubMed ID: 2849609 [TBL] [Abstract][Full Text] [Related]
6. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Flucher BE; Andrews SB; Daniels MP Mol Biol Cell; 1994 Oct; 5(10):1105-18. PubMed ID: 7865878 [TBL] [Abstract][Full Text] [Related]
7. Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. Brandt NR; Caswell AH; Wen SR; Talvenheimo JA J Membr Biol; 1990 Feb; 113(3):237-51. PubMed ID: 2159517 [TBL] [Abstract][Full Text] [Related]
8. The ryanodine receptor/junctional channel complex is regulated by growth factors in a myogenic cell line. Marks AR; Taubman MB; Saito A; Dai Y; Fleischer S J Cell Biol; 1991 Jul; 114(2):303-12. PubMed ID: 1649198 [TBL] [Abstract][Full Text] [Related]
9. Immunolocalization of triadin, DHP receptors, and ryanodine receptors in adult and developing skeletal muscle of rats. Carl SL; Felix K; Caswell AH; Brandt NR; Brunschwig JP; Meissner G; Ferguson DG Muscle Nerve; 1995 Nov; 18(11):1232-43. PubMed ID: 7565919 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle. Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716 [TBL] [Abstract][Full Text] [Related]
11. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. Jorgensen AO; Shen AC; Arnold W; Leung AT; Campbell KP J Cell Biol; 1989 Jul; 109(1):135-47. PubMed ID: 2545725 [TBL] [Abstract][Full Text] [Related]
12. Identification of an alpha subunit of dihydropyridine-sensitive brain calcium channels. Takahashi M; Catterall WA Science; 1987 Apr; 236(4797):88-91. PubMed ID: 2436296 [TBL] [Abstract][Full Text] [Related]
13. Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. Powell JA; Petherbridge L; Flucher BE J Cell Biol; 1996 Jul; 134(2):375-87. PubMed ID: 8707823 [TBL] [Abstract][Full Text] [Related]
14. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. Tuvia S; Buhusi M; Davis L; Reedy M; Bennett V J Cell Biol; 1999 Nov; 147(5):995-1008. PubMed ID: 10579720 [TBL] [Abstract][Full Text] [Related]
15. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Flucher BE; Daniels MP Neuron; 1989 Aug; 3(2):163-75. PubMed ID: 2560390 [TBL] [Abstract][Full Text] [Related]
16. AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. Kordeli E; Ludosky MA; Deprette C; Frappier T; Cartaud J J Cell Sci; 1998 Aug; 111 ( Pt 15)():2197-207. PubMed ID: 9664041 [TBL] [Abstract][Full Text] [Related]
17. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103 [TBL] [Abstract][Full Text] [Related]
18. Identification of a new subpopulation of triad junctions isolated from skeletal muscle; morphological correlations with intact muscle. Kim KC; Caswell AH; Brunschwig JP; Brandt NR J Membr Biol; 1990 Feb; 113(3):221-35. PubMed ID: 2159516 [TBL] [Abstract][Full Text] [Related]
19. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124 [TBL] [Abstract][Full Text] [Related]
20. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Flucher BE; Takekura H; Franzini-Armstrong C Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]