These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21693057)

  • 1. Blood pressure long term regulation: a neural network model of the set point development.
    Zanutto BS; Frías BC; Valentinuzzi ME
    Biomed Eng Online; 2011 Jun; 10():54. PubMed ID: 21693057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius.
    Zanutto BS; Valentinuzzi ME; Segura ET
    Biomed Eng Online; 2010 Jan; 9():4. PubMed ID: 20064256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.
    Ichinose TK; Minic Z; Li C; O'Leary DS; Scislo TJ
    Am J Physiol Regul Integr Comp Physiol; 2012 Sep; 303(5):R539-50. PubMed ID: 22814665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered cardiovascular responses to purinergic A2 stimulation in the nucleus tractus solitarius of spontaneously hypertensive rats.
    Tanaka M; Takeda K; Takesako T; Takenaka K; Itoh H; Nakata T; Sasaki S; Nakagawa M
    J Hypertens; 1995 Nov; 13(11):1285-90. PubMed ID: 8984126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of medullary brain nuclei for the sympatho-inhibitory actions of rilmenidine in the anaesthetized rabbit.
    Head GA; Burke SL
    J Hypertens; 1998 Apr; 16(4):503-17. PubMed ID: 9797196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure.
    Osborn JW; Averina VA; Fink GD
    Exp Physiol; 2009 Apr; 94(4):389-96. PubMed ID: 19286640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airway obstruction produces widespread sympathoexcitation: role of hypoxia, carotid chemoreceptors, and NTS neurotransmission.
    Ferreira CB; Cravo SL; Stocker SD
    Physiol Rep; 2018 Feb; 6(3):. PubMed ID: 29388357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac sympathetic afferent stimulation augments the arterial chemoreceptor reflex in anesthetized rats.
    Gao L; Pan YX; Wang WZ; Li YL; Schultz HD; Zucker IH; Wang W
    J Appl Physiol (1985); 2007 Jan; 102(1):37-43. PubMed ID: 16902057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute intermittent optogenetic stimulation of nucleus tractus solitarius neurons induces sympathetic long-term facilitation.
    Yamamoto K; Lalley P; Mifflin S
    Am J Physiol Regul Integr Comp Physiol; 2015 Feb; 308(4):R266-75. PubMed ID: 25519734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GABAergic neurones in the nucleus tractus solitarii in modulation of cardiovascular activity.
    Zubcevic J; Potts JT
    Exp Physiol; 2010 Sep; 95(9):909-18. PubMed ID: 20591977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius.
    Wang WZ; Gao L; Pan YX; Zucker IH; Wang W
    Neurosci Lett; 2006 Dec; 409(2):146-50. PubMed ID: 17014954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomic control of the cardiovascular system in the cat during hypoxemia.
    Fitzgerald RS; Dehghani GA; Kiihl S
    Auton Neurosci; 2013 Mar; 174(1-2):21-30. PubMed ID: 23265983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putative role of the NTS in alterations in neural control of the circulation following exercise training in rats.
    Mueller PJ; Hasser EM
    Am J Physiol Regul Integr Comp Physiol; 2006 Feb; 290(2):R383-92. PubMed ID: 16179489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoreception and neuroplasticity in respiratory circuits.
    Barnett WH; Abdala AP; Paton JF; Rybak IA; Zoccal DB; Molkov YI
    Exp Neurol; 2017 Jan; 287(Pt 2):153-164. PubMed ID: 27240520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin in the nucleus tractus solitarii contributes to neurogenic hypertension caused by chronic nitric oxide synthase inhibition.
    Eshima K; Hirooka Y; Shigematsu H; Matsuo I; Koike G; Sakai K; Takeshita A
    Hypertension; 2000 Aug; 36(2):259-63. PubMed ID: 10948087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaphylactic hypotension causes renal and adrenal sympathoexcitaion and induces c-fos in the hypothalamus and medulla oblongata.
    Tanida M; Zhang T; Sun L; Song J; Yang W; Kuda Y; Kurata Y; Shibamoto T
    Exp Physiol; 2018 Jun; 103(6):790-806. PubMed ID: 29524326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei.
    Saha S
    Clin Exp Pharmacol Physiol; 2005; 32(5-6):450-6. PubMed ID: 15854157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis.
    Brooks VL; Osborn JW
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1343-58. PubMed ID: 7611509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NTS and integration of cardiovascular control during exercise in normotensive and hypertensive individuals.
    Michelini LC
    Curr Hypertens Rep; 2007 Jun; 9(3):214-21. PubMed ID: 17519128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay between sympathetic overactivity, hypertension and heart rate variability (review, invited).
    Drenjancevic I; Grizelj I; Harsanji-Drenjancevic I; Cavka A; Selthofer-Relatic K
    Acta Physiol Hung; 2014 Jun; 101(2):129-42. PubMed ID: 24901074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.