These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21693189)

  • 41. In vitro and in vivo evaluation of a fast-disintegrating lyophilized dry emulsion tablet containing griseofulvin.
    Ahmed IS; Aboul-Einien MH
    Eur J Pharm Sci; 2007 Sep; 32(1):58-68. PubMed ID: 17628451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preformulation studies for generic omeprazole magnesium enteric coated tablets.
    Migoha CO; Ratansi M; Kaale E; Kagashe G
    Biomed Res Int; 2015; 2015():307032. PubMed ID: 25699270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formulation design for orally disintegrating tablets containing enteric-coated particles.
    Okuda Y; Okamoto Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S
    Chem Pharm Bull (Tokyo); 2014; 62(5):407-14. PubMed ID: 24789923
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The physical characteristics of lyophilized tablets containing a model drug in different chemical forms and concentrations.
    Sznitowska M; Płaczek M; Klunder M
    Acta Pol Pharm; 2005; 62(1):25-9. PubMed ID: 16022490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions.
    Kim S; Lee J
    Int J Pharm; 2010 Sep; 397(1-2):218-24. PubMed ID: 20637852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of novel fast disintegrating capsules (Fastcaps) for administration in the oral cavity.
    Ciper M; Bodmeier R
    Int J Pharm; 2005 Oct; 303(1-2):62-71. PubMed ID: 16111845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An investigation of the disintegration of tablets in biorelevant media.
    Anwar S; Fell JT; Dickinson PA
    Int J Pharm; 2005 Feb; 290(1-2):121-7. PubMed ID: 15664137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formulation and process optimization of multiparticulate pulsatile system delivered by osmotic pressure-activated rupturable membrane.
    Hung SF; Hsieh CM; Chen YC; Lin CM; Ho HO; Sheu MT
    Int J Pharm; 2015 Mar; 480(1-2):15-26. PubMed ID: 25575473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of powder characteristics on oral tablet disintegration.
    Yamamoto Y; Fujii M; Watanabe K; Tsukamoto M; Shibata Y; Kondoh M; Watanabe Y
    Int J Pharm; 2009 Jan; 365(1-2):116-20. PubMed ID: 18804156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of oral disintegration time of fast disintegrating tablets using texture analyzer and computational optimization.
    Szakonyi G; Zelkó R
    Int J Pharm; 2013 May; 448(2):346-53. PubMed ID: 23558313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: screening of formulation variables and in vitro investigation.
    Liu H; Yang XG; Nie SF; Wei LL; Zhou LL; Liu H; Tang R; Pan WS
    Int J Pharm; 2007 Mar; 332(1-2):115-24. PubMed ID: 17052871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The technologies used for developing orally disintegrating tablets: a review.
    Badgujar BP; Mundada AS
    Acta Pharm; 2011 Jun; 61(2):117-39. PubMed ID: 21684842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests.
    Momeni M; Afkanpour M; Rakhshani S; Mehrabian A; Tabesh H
    BMC Med Inform Decis Mak; 2024 Mar; 24(1):88. PubMed ID: 38539201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selection of generic preparations of famotidine orally disintegrating tablets for use in unit-dose packages.
    Yamazaki N; Iizuka R; Miyazawa S; Wada Y; Shimokawa K; Ishii F
    Drug Discov Ther; 2012 Oct; 6(5):263-8. PubMed ID: 23229147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Release behavior and photo-image of nifedipine tablet coated with high viscosity grade hydroxypropylmethylcellulose: effect of coating conditions.
    Cao QR; Choi HG; Kim DC; Lee BJ
    Int J Pharm; 2004 Apr; 274(1-2):107-17. PubMed ID: 15072787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development and evaluation of controlled release ibuprofen matrix tablets by direct compression technique.
    Patel N; Madan P; Lin S
    Pharm Dev Technol; 2011 Feb; 16(1):1-11. PubMed ID: 20491616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New perspective to develop memantine orally disintegrating tablet formulations: SeDeM expert system.
    Gülbağ S; Yılmaz Usta D; Gültekin HE; Oktay AN; Demirtaş Ö; Karaküçük A; Çelebi N
    Pharm Dev Technol; 2018 Jun; 23(5):512-519. PubMed ID: 28657404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expedited Development of Diphenhydramine Orally Disintegrating Tablet through Integrated Crystal and Particle Engineering.
    Wang C; Hu S; Sun CC
    Mol Pharm; 2017 Oct; 14(10):3399-3408. PubMed ID: 28825961
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and evaluation of floating multi-layer coated tablets based on gas formation.
    Sungthongjeen S; Sriamornsak P; Puttipipatkhachorn S
    Eur J Pharm Biopharm; 2008 May; 69(1):255-63. PubMed ID: 17967527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.