These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 21693392)

  • 1. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.
    Park DW
    Comput Math Methods Med; 2015; 2015():2541325. PubMed ID: 27293476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a consensus on rheological models for elastography in soft tissues.
    Parker KJ; Szabo T; Holm S
    Phys Med Biol; 2019 Oct; 64(21):215012. PubMed ID: 31530765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of natural flexural pulse waves in retinal and carotid arteries for wall elasticity estimation.
    Laloy-Borgna G; Puyo L; Nishino H; Atlan M; Catheline S
    Sci Adv; 2023 Jun; 9(25):eadf1783. PubMed ID: 37343110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Debiased ambient vibrations optical coherence elastography to profile cell, organoid and tissue mechanical properties.
    Mason JH; Luo L; Reinwald Y; Taffetani M; Hallas-Potts A; Herrington CS; Srsen V; Lin CJ; Barroso IA; Zhang Z; Zhang Z; Ghag AK; Yang Y; Waters S; El Haj AJ; Bagnaninchi PO
    Commun Biol; 2023 May; 6(1):543. PubMed ID: 37202417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency ultrasound point-of-care device to quantify myopia-induced microstructural changes in the anterior sclera.
    Hoerig C; Hoang QV; Aichele J; Catheline S; Mamou J
    Ophthalmic Physiol Opt; 2023 May; 43(3):544-557. PubMed ID: 36943177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asynchronous magnetic resonance elastography: Shear wave speed reconstruction using noise correlation of incoherent waves.
    Nguyen KD; Bonner BP; Foster AN; Sadighi M; Nguyen CT
    Magn Reson Med; 2023 Mar; 89(3):990-1001. PubMed ID: 36300861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave-based optical coherence elastography: The 10-year perspective.
    Zvietcovich F; Larin KV
    Prog Biomed Eng (Bristol); 2022 Jan; 4(1):. PubMed ID: 35187403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lorentz force induced shear waves for magnetic resonance elastography applications.
    Flé G; Gilbert G; Grasland-Mongrain P; Cloutier G
    Sci Rep; 2021 Jun; 11(1):12785. PubMed ID: 34140568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heartbeat optical coherence elastography: corneal biomechanics in vivo.
    Nair A; Singh M; Aglyamov S; Larin KV
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33624461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography.
    Nair A; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Endogenous Brain Tissue Displacement Imaging by Radiofrequency Ultrasound.
    Jurkonis R; Makūnaitė M; Baranauskas M; Lukoševičius A; Sakalauskas A; Matijošaitis V; Rastenytė D
    Diagnostics (Basel); 2020 Jan; 10(2):. PubMed ID: 31973031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast imaging of cell elasticity with optical microelastography.
    Grasland-Mongrain P; Zorgani A; Nakagawa S; Bernard S; Paim LG; Fitzharris G; Catheline S; Cloutier G
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):861-866. PubMed ID: 29339488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain palpation from physiological vibrations using MRI.
    Zorgani A; Souchon R; Dinh AH; Chapelon JY; Ménager JM; Lounis S; Rouvière O; Catheline S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12917-21. PubMed ID: 26438877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array.
    Wang M; Byram B; Palmeri M; Rouze N; Nightingale K
    IEEE Trans Med Imaging; 2013 Sep; 32(9):1671-84. PubMed ID: 23686942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic waves in medical imaging and diagnostics.
    Sarvazyan AP; Urban MW; Greenleaf JF
    Ultrasound Med Biol; 2013 Jul; 39(7):1133-46. PubMed ID: 23643056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the precision of time-of-flight shear wave speed estimation in homogeneous soft solids: initial results using a matrix array transducer.
    Wang M; Byram B; Palmeri M; Rouze N; Nightingale K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):758-70. PubMed ID: 23549536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues.
    Gallot T; Catheline S; Roux P; Brum J; Benech N; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1122-6. PubMed ID: 21693392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear wave speed and dispersion measurements using crawling wave chirps.
    Hah Z; Partin A; Parker KJ
    Ultrason Imaging; 2014 Oct; 36(4):277-90. PubMed ID: 24658144
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.