BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21693412)

  • 21. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping.
    Guo LX; Teo EC; Lee KK; Zhang QH
    Spine (Phila Pa 1976); 2005 Mar; 30(6):631-7. PubMed ID: 15770177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
    Woldtvedt DJ; Womack W; Gadomski BC; Schuldt D; Puttlitz CM
    J Biomech Eng; 2011 Jun; 133(6):061009. PubMed ID: 21744929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution.
    Ezquerro F; García Vacas F; Postigo S; Prado M; Simón A
    Med Eng Phys; 2011 Jan; 33(1):89-95. PubMed ID: 20952242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.
    Ayturk UM; Puttlitz CM
    Comput Methods Biomech Biomed Engin; 2011 Aug; 14(8):695-705. PubMed ID: 21229413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis of the lumbar spine with a new cage using a topology optimization method.
    Zhong ZC; Wei SH; Wang JP; Feng CK; Chen CS; Yu CH
    Med Eng Phys; 2006 Jan; 28(1):90-8. PubMed ID: 16426979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An accurate validation of a computational model of a human lumbosacral segment.
    Moramarco V; Pérez del Palomar A; Pappalettere C; Doblaré M
    J Biomech; 2010 Jan; 43(2):334-42. PubMed ID: 19909959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading.
    Schmidt H; Kettler A; Heuer F; Simon U; Claes L; Wilke HJ
    Spine (Phila Pa 1976); 2007 Apr; 32(7):748-55. PubMed ID: 17414908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models.
    Noailly J; Planell JA; Lacroix D
    Biomech Model Mechanobiol; 2011 Apr; 10(2):203-19. PubMed ID: 20532944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between finite helical axes and facet joint forces under combined loading.
    Schmidt H; Heuer F; Wilke HJ
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2741-8. PubMed ID: 19050579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A musculoskeletal model for the lumbar spine.
    Christophy M; Faruk Senan NA; Lotz JC; O'Reilly OM
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):19-34. PubMed ID: 21318374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system.
    Wilke HJ; Heuer F; Schmidt H
    Spine (Phila Pa 1976); 2009 Feb; 34(3):255-61. PubMed ID: 19179920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element analysis of the spondylolysis in lumbar spine.
    Wang JP; Zhong ZC; Cheng CK; Chen CS; Yu CH; Chang TK; Wei SH
    Biomed Mater Eng; 2006; 16(5):301-8. PubMed ID: 17075165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment.
    Guo LX; Li WJ
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):69-80. PubMed ID: 31813282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of vibration testing for the assessment of the mechanical properties of human lumbar motion segments.
    van Engelen SJ; Ellenbroek MH; van Royen BJ; de Boer A; van Dieën JH
    J Biomech; 2012 Jun; 45(10):1753-8. PubMed ID: 22648145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants.
    Amiri S; Naserkhaki S; Parnianpour M
    Comput Biol Med; 2019 Apr; 107():292-301. PubMed ID: 30901617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG
    Spine J; 2009; 9(1):96-102. PubMed ID: 18440280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.