BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21693412)

  • 41. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis.
    Chiang MF; Zhong ZC; Chen CS; Cheng CK; Shih SL
    Spine (Phila Pa 1976); 2006 Sep; 31(19):E682-9. PubMed ID: 16946641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study.
    Guo LX; Fan W
    Med Biol Eng Comput; 2019 Jan; 57(1):221-229. PubMed ID: 30083805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
    Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ
    Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.
    Schmidt H; Heuer F; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):270-8. PubMed ID: 17997207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influences of denucleation on contact force of facet joints under whole body vibration.
    Guo LX; Zhang M; Teo EC
    Ergonomics; 2007 Jul; 50(7):967-78. PubMed ID: 17510817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5: anatomic and finite element investigations.
    Ivanov AA; Faizan A; Ebraheim NA; Yeasting R; Goel VK
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2462-6. PubMed ID: 18090086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.
    Dong RC; Guo LX
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28264145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The relationship between hip flexion/extension and the sagittal curves of the spine.
    Driscoll C; Aubin CE; Labelle H; Dansereau J
    Stud Health Technol Inform; 2008; 140():90-5. PubMed ID: 18810006
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion.
    Schleicher P; Gerlach R; Schär B; Cain CM; Achatz W; Pflugmacher R; Haas NP; Kandziora F
    Eur Spine J; 2008 Dec; 17(12):1757-65. PubMed ID: 18841399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment.
    Schmidt H; Heuer F; Drumm J; Klezl Z; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):377-84. PubMed ID: 17204355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study.
    Ruberté LM; Natarajan RN; Andersson GB
    J Biomech; 2009 Feb; 42(3):341-8. PubMed ID: 19136113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of a clinical finite element model of the human lumbosacral spine.
    Guan Y; Yoganandan N; Zhang J; Pintar FA; Cusick JF; Wolfla CE; Maiman DJ
    Med Biol Eng Comput; 2006 Aug; 44(8):633-41. PubMed ID: 16937205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effect of spongiosa density on load bearing of the lumbar spine.A finite element analysis].
    Pitzen T; Matthis D; Müller-Storz H; Ritz R; Caspar W; Steudel WI
    Z Orthop Ihre Grenzgeb; 2000; 138(1):17-21. PubMed ID: 10730358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validated finite element analysis of the maverick total disc prosthesis.
    Le Huec JC; Lafage V; Bonnet X; Lavaste F; Josse L; Liu M; Skalli W
    J Spinal Disord Tech; 2010 Jun; 23(4):249-57. PubMed ID: 20068471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element analysis of moment-rotation relationships for human cervical spine.
    Zhang QH; Teo EC; Ng HW; Lee VS
    J Biomech; 2006; 39(1):189-93. PubMed ID: 16271604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical comparison of traditional and minimally invasive intradural tumor exposures using finite element analysis.
    Ogden AT; Bresnahan L; Smith JS; Natarajan R; Fessler RG
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):143-7. PubMed ID: 19121823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo transient vibration assessment of the normal human thoracolumbar spine.
    Keller TS; Colloca CJ; Fuhr AW
    J Manipulative Physiol Ther; 2000 Oct; 23(8):521-30. PubMed ID: 11050608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of the natural frequencies of different degrees of degenerated human lumbar segments L2-L3 using dynamic finite element analysis.
    Fan R; Liu J; Liu J
    Comput Methods Programs Biomed; 2021 Sep; 209():106352. PubMed ID: 34419755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine.
    Guo LX; Zhang C
    World Neurosurg; 2022 Jul; 163():e579-e592. PubMed ID: 35436583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.