These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 21693412)

  • 61. Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine.
    Guo LX; Zhang C
    World Neurosurg; 2022 Jul; 163():e579-e592. PubMed ID: 35436583
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Finite element modelling and biodynamic response prediction of the seated human body exposed to whole-body vibration.
    Gao K; Zhang Z; Lu H; Xu Z; He Y
    Ergonomics; 2023 Dec; 66(12):1854-1867. PubMed ID: 36656143
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Determination of vibration-related spinal loads by numerical simulation.
    Pankoke S; Hofmann J; Wölfel HP
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S45-56. PubMed ID: 11275342
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?--a modeling study.
    Little JP; de Visser H; Pearcy MJ; Adam CJ
    Comput Methods Biomech Biomed Engin; 2008 Feb; 11(1):95-103. PubMed ID: 17943481
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach.
    Goel VK; Park H; Kong W
    J Biomech Eng; 1994 Nov; 116(4):377-83. PubMed ID: 7869712
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Porcine models in spinal research: calibration and comparative finite element analysis of various configurations during flexion-extension.
    Aziz HN; Galbusera F; Bellini CM; Mineo GV; Addis A; Pietrabissa R; Brayda-Bruno M
    Comp Med; 2008 Apr; 58(2):174-9. PubMed ID: 18524176
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling and validation of a detailed FE viscoelastic lumbar spine model for vehicle occupant dummies.
    Amiri S; Naserkhaki S; Parnianpour M
    Comput Biol Med; 2018 Aug; 99():191-200. PubMed ID: 29945043
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Material property sensitivity analysis on resonant frequency characteristics of the human spine.
    Guo LX; Wang ZW; Zhang YM; Lee KK; Teo EC; Li H; Wen BC
    J Appl Biomech; 2009 Feb; 25(1):64-72. PubMed ID: 19299831
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics.
    Xu M; Yang J; Lieberman I; Haddas R
    Comput Biol Med; 2017 May; 84():53-58. PubMed ID: 28342408
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].
    Zhang Z; Li Y; Liao Z; Liu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1196-202. PubMed ID: 29715419
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Finite Element Investigation of the Effects of the Low-Frequency Vibration Generated by Vehicle Driving on the Human Lumbar Mechanical Properties.
    Fan RX; Liu J; Li YL; Liu J; Gao JZ
    Biomed Res Int; 2018; 2018():7962414. PubMed ID: 30364013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional implications of variation in lumbar vertebral count among hominins.
    Whitcome KK
    J Hum Evol; 2012 Apr; 62(4):486-97. PubMed ID: 22425070
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Application of finite-element models to predict forces acting on the lumbar spine during whole-body vibration.
    Seidel H; Blüthner R; Hinz B
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S57-63. PubMed ID: 11275343
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of facet curvature for accurate vertebral facet load analysis.
    Holzapfel GA; Stadler M
    Eur Spine J; 2006 Jun; 15(6):849-56. PubMed ID: 15912350
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of whole-body vibration at different frequencies on the lumbar spine: A finite element study based on a whole human body model.
    Zhang C; Guo LX
    Proc Inst Mech Eng H; 2022 Dec; 236(12):1752-1761. PubMed ID: 36377853
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction of the biomechanical behaviour of the lumbar spine under multi-axis whole-body vibration using a whole-body finite element model.
    Zhang C; Guo LX
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3764. PubMed ID: 37539646
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.
    Campbell JQ; Coombs DJ; Rao M; Rullkoetter PJ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2669-2676. PubMed ID: 27291694
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Three-dimensional modeling of supine human and transport system under whole-body vibration.
    Wang Y; Rahmatalla S
    J Biomech Eng; 2013 Jun; 135(6):61010-13. PubMed ID: 23699722
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Method to geometrically personalize a detailed finite-element model of the spine.
    Lalonde NM; Petit Y; Aubin CE; Wagnac E; Arnoux PJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2014-21. PubMed ID: 23434601
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Finite element investigation on the dynamic mechanical properties of low-frequency vibrations on human L2-L3 spinal motion segments with different degrees of degeneration.
    Fan R; Liu J; Liu J
    Med Biol Eng Comput; 2020 Dec; 58(12):3003-3016. PubMed ID: 33064234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.