These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21693412)

  • 81. Finite element investigation on the dynamic mechanical properties of low-frequency vibrations on human L2-L3 spinal motion segments with different degrees of degeneration.
    Fan R; Liu J; Liu J
    Med Biol Eng Comput; 2020 Dec; 58(12):3003-3016. PubMed ID: 33064234
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Biomechanical study of lumbar spine under different vibration conditions].
    Xiang P; Du C; Mo Z; Gong H; Wang L; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):48-54. PubMed ID: 25997265
    [TBL] [Abstract][Full Text] [Related]  

  • 83. FEBio finite element models of the human lumbar spine.
    Finley SM; Brodke DS; Spina NT; DeDen CA; Ellis BJ
    Comput Methods Biomech Biomed Engin; 2018 May; 21(6):444-452. PubMed ID: 30010415
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Biodynamic responses of adolescent idiopathic scoliosis exposed to vibration.
    Jia S; Lin L; Yang H; Xie J; Liu Z; Zhang T; Fan J; Han L
    Med Biol Eng Comput; 2023 Jan; 61(1):271-284. PubMed ID: 36385615
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.
    Campbell JQ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2593-2599. PubMed ID: 27270207
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
    Campbell JQ; Petrella AJ
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2709-16. PubMed ID: 26080375
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [The effect of rib cage on the dynamic response stability of the scoliotic spine].
    Yang H; Lin L; Zhang S; Tian T; Li Y; Han L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):769-776. PubMed ID: 31631625
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A novel kinematic model for a functional spinal unit and a lumbar spine.
    Ciszkiewicz A; Milewski G
    Acta Bioeng Biomech; 2016; 18(1):87-95. PubMed ID: 27150025
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Movement posture and injury pattern of pelvis-lumbar spine of seated human impacted by the vertical high loads: a finite element analysis.
    Jiang Y; Xiong X; Chen Z; Li Y
    Comput Methods Biomech Biomed Engin; 2023 May; 26(7):835-845. PubMed ID: 35758223
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Finite element modal analysis and harmonic response analysis of human arm grasping model.
    Liu S; Xu H; Shang Y; Jiang W; Dong J
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(14):1082-1093. PubMed ID: 32646237
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanical coupling effects into a L3-L5 vertebral segment.
    Estivalezes E; Briot J; Abelin-Genevois K; Accabled F; Sales de Gauzy J; Swider P
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():333-4. PubMed ID: 23009530
    [No Abstract]   [Full Text] [Related]  

  • 92. Reconstruction of a human ligamentous lumbar spine using CT images--a three-dimensional finite element mesh generation.
    Breau C; Shirazi-Adl A; de Guise J
    Ann Biomed Eng; 1991; 19(3):291-302. PubMed ID: 1928871
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Lumbar spine finite element model for healthy subjects: development and validation.
    Xu M; Yang J; Lieberman IH; Haddas R
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):1-15. PubMed ID: 27315668
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effects of sinusoidal whole-body vibration on the lumbar spine: the stress-strain relationship.
    Seidel H; Bluethner R; Hinz B
    Int Arch Occup Environ Health; 1986; 57(3):207-23. PubMed ID: 3957440
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Finite element modeling and parameter identification of the seated human body exposed to vertical vibration.
    Gao K; Li C; Xiao Y; Zhang Z
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1789-1803. PubMed ID: 34268622
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Study on the biodynamic characteristics and internal vibration behaviors of a seated human body under biomechanical characteristics.
    Dong R; Zhu S; Cheng X; Gao X; Wang Z; Wang Y
    Biomech Model Mechanobiol; 2024 Apr; ():. PubMed ID: 38671153
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Whole-body vibration transmissibility in supine humans: effects of board litter and neck collar.
    Meusch J; Rahmatalla S
    Appl Ergon; 2014 May; 45(3):677-85. PubMed ID: 24075288
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Experimental platform to facilitate novel back brace development for the improvement of spine stability.
    Cooper L; Gullane A; Harvey J; Hills A; Zemura M; Martindale J; Rennie A; Cheneler D
    Comput Methods Biomech Biomed Engin; 2019 Nov; 22(15):1163-1173. PubMed ID: 31361152
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Resonance behaviour of the seated human body and effects of posture.
    Kitazaki S; Griffin MJ
    J Biomech; 1998 Feb; 31(2):143-9. PubMed ID: 9593207
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Description of the relation between the forces acting in the lumbar spine and whole-body vibrations by means of transfer functions.
    Fritz M
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):234-40. PubMed ID: 10675663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.