These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 21693490)

  • 1. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis.
    Frank MJ; Badre D
    Cereb Cortex; 2012 Mar; 22(3):509-26. PubMed ID: 21693490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to select actions shapes recurrent dynamics in the corticostriatal system.
    Márton CD; Schultz SR; Averbeck BB
    Neural Netw; 2020 Dec; 132():375-393. PubMed ID: 32992244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.
    Morita K; Jitsev J; Morrison A
    Behav Brain Res; 2016 Sep; 311():110-121. PubMed ID: 27173430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontal cortex function as derived from hierarchical predictive coding.
    Alexander WH; Brown JW
    Sci Rep; 2018 Mar; 8(1):3843. PubMed ID: 29497060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.
    Bullock D; Tan CO; John YJ
    Neural Netw; 2009; 22(5-6):757-65. PubMed ID: 19592218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.
    Moustafa AA; Gluck MA
    J Cogn Neurosci; 2011 Jan; 23(1):151-67. PubMed ID: 20044893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Role of Cortex-Basal Ganglia Interactions for Category Learning: A Neurocomputational Approach.
    Villagrasa F; Baladron J; Vitay J; Schroll H; Antzoulatos EG; Miller EK; Hamker FH
    J Neurosci; 2018 Oct; 38(44):9551-9562. PubMed ID: 30228231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticostriatal output gating during selection from working memory.
    Chatham CH; Frank MJ; Badre D
    Neuron; 2014 Feb; 81(4):930-42. PubMed ID: 24559680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. With you or against you: social orientation dependent learning signals guide actions made for others.
    Christopoulos GI; King-Casas B
    Neuroimage; 2015 Jan; 104():326-35. PubMed ID: 25224998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.
    Jocham G; Klein TA; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1606-13. PubMed ID: 21289169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models of motivated action selection in corticostriatal circuits.
    Frank MJ
    Curr Opin Neurobiol; 2011 Jun; 21(3):381-6. PubMed ID: 21498067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple representations of belief states and action values in corticobasal ganglia loops.
    Samejima K; Doya K
    Ann N Y Acad Sci; 2007 May; 1104():213-28. PubMed ID: 17435124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.
    Doll BB; Jacobs WJ; Sanfey AG; Frank MJ
    Brain Res; 2009 Nov; 1299():74-94. PubMed ID: 19595993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding parallels in fronto-striatal organization.
    Desrochers TM; Badre D
    Trends Cogn Sci; 2012 Aug; 16(8):407-8. PubMed ID: 22749916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing PFC representations using reinforcement learning.
    Reynolds JR; O'Reilly RC
    Cognition; 2009 Dec; 113(3):281-292. PubMed ID: 19591977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.