BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21693598)

  • 1. Effects of foveal ablation on the pattern of peripheral refractive errors in normal and form-deprived infant rhesus monkeys (Macaca mulatta).
    Huang J; Hung LF; Smith EL
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6428-34. PubMed ID: 21693598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of foveal ablation on emmetropization and form-deprivation myopia.
    Smith EL; Ramamirtham R; Qiao-Grider Y; Hung LF; Huang J; Kee CS; Coats D; Paysse E
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):3914-22. PubMed ID: 17724167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of form deprivation on peripheral refractions and ocular shape in infant rhesus monkeys (Macaca mulatta).
    Huang J; Hung LF; Ramamirtham R; Blasdel TL; Humbird TL; Bockhorst KH; Smith EL
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4033-44. PubMed ID: 19420338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys.
    Smith EL; Huang J; Hung LF; Blasdel TL; Humbird TL; Bockhorst KH
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5057-69. PubMed ID: 19494197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral vision can influence eye growth and refractive development in infant monkeys.
    Smith EL; Kee CS; Ramamirtham R; Qiao-Grider Y; Hung LF
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3965-72. PubMed ID: 16249469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms.
    Smith EL; Hung LF; Huang J; Blasdel TL; Humbird TL; Bockhorst KH
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3864-73. PubMed ID: 20220051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of peripheral refractive errors and ocular shape in rhesus monkeys (Macaca mulatta) with experimentally induced myopia.
    Huang J; Hung LF; Smith EL
    Vision Res; 2012 Nov; 73():30-9. PubMed ID: 23026012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery from form-deprivation myopia in rhesus monkeys.
    Qiao-Grider Y; Hung LF; Kee CS; Ramamirtham R; Smith EL
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3361-72. PubMed ID: 15452037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of local myopic defocus on refractive development in monkeys.
    Smith EL; Hung LF; Huang J; Arumugam B
    Optom Vis Sci; 2013 Nov; 90(11):1176-86. PubMed ID: 24061154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
    Hung LF; Arumugam B; She Z; Ostrin L; Smith EL
    Exp Eye Res; 2018 Nov; 176():147-160. PubMed ID: 29981345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys.
    Smith EL; Hung LF; Huang J
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):421-8. PubMed ID: 22169102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of brief periods of unrestricted vision on the development of form-deprivation myopia in monkeys.
    Smith EL; Hung LF; Kee CS; Qiao Y
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):291-9. PubMed ID: 11818369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral refraction in normal infant rhesus monkeys.
    Hung LF; Ramamirtham R; Huang J; Qiao-Grider Y; Smith EL
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3747-57. PubMed ID: 18487366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of and recovery from form-deprivation myopia in infant rhesus monkeys reared under reduced ambient lighting.
    She Z; Hung LF; Arumugam B; Beach KM; Smith EL
    Vision Res; 2021 Jun; 183():106-117. PubMed ID: 33799131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision-dependent changes in the choroidal thickness of macaque monkeys.
    Hung LF; Wallman J; Smith EL
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1259-69. PubMed ID: 10798639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys.
    Smith EL; Hung LF; She Z; Beach K; Ostrin LA; Jong M
    Exp Eye Res; 2021 Feb; 203():108438. PubMed ID: 33428866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
    Smith EL; Hung LF; Huang J
    Vision Res; 2009 Sep; 49(19):2386-92. PubMed ID: 19632261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Form deprivation myopia in adolescent monkeys.
    Smith EL; Bradley DV; Fernandes A; Boothe RG
    Optom Vis Sci; 1999 Jun; 76(6):428-32. PubMed ID: 10416938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of reduced ambient lighting on lens compensation in infant rhesus monkeys.
    She Z; Hung LF; Arumugam B; Beach KM; Smith Iii EL
    Vision Res; 2021 Oct; 187():14-26. PubMed ID: 34144362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave aberrations in rhesus monkeys with vision-induced ametropias.
    Ramamirtham R; Kee CS; Hung LF; Qiao-Grider Y; Huang J; Roorda A; Smith EL
    Vision Res; 2007 Sep; 47(21):2751-66. PubMed ID: 17825347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.