These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 21693643)
1. Paleo-Green Revolution for rice. Paterson AH; Li ZK Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10931-2. PubMed ID: 21693643 [No Abstract] [Full Text] [Related]
2. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. Zhang J; Zhou X; Yan W; Zhang Z; Lu L; Han Z; Zhao H; Liu H; Song P; Hu Y; Shen G; He Q; Guo S; Gao G; Wang G; Xing Y New Phytol; 2015 Dec; 208(4):1056-66. PubMed ID: 26147403 [TBL] [Abstract][Full Text] [Related]
3. Combinations of Hd2 and Hd4 genes determine rice adaptability to Heilongjiang Province, northern limit of China. Li X; Liu H; Wang M; Liu H; Tian X; Zhou W; Lü T; Wang Z; Chu C; Fang J; Bu Q J Integr Plant Biol; 2015 Aug; 57(8):698-707. PubMed ID: 25557147 [TBL] [Abstract][Full Text] [Related]
5. Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Shin D; Lee S; Kim TH; Lee JH; Park J; Lee J; Lee JY; Cho LH; Choi JY; Lee W; Park JH; Lee DW; Ito H; Kim DH; Tanaka A; Cho JH; Song YC; Hwang D; Purugganan MD; Jeon JS; An G; Nam HG Nat Commun; 2020 Jun; 11(1):2819. PubMed ID: 32499482 [TBL] [Abstract][Full Text] [Related]
6. Identification and genetic analysis of qCL1.2, a novel allele of the "green revolution" gene SD1 from wild rice (Oryza rufipogon) that enhances plant height. Zhang L; Huang J; Wang Y; Xu R; Yang Z; Zhao Z; Liu S; Tian Y; Zheng X; Li F; Wang J; Song Y; Li J; Cui Y; Zhang LF; Cheng Y; Lan J; Qiao W; Yang Q BMC Genet; 2020 Jun; 21(1):62. PubMed ID: 32527215 [TBL] [Abstract][Full Text] [Related]
7. Mining of favorable alleles for seed reserve utilization efficiency in Oryza sativa by means of association mapping. Ali N; Li D; Eltahawy MS; Abdulmajid D; Bux L; Liu E; Dang X; Hong D BMC Genet; 2020 Jan; 21(1):4. PubMed ID: 31948408 [TBL] [Abstract][Full Text] [Related]
8. Artificial selection for a green revolution gene during japonica rice domestication. Asano K; Yamasaki M; Takuno S; Miura K; Katagiri S; Ito T; Doi K; Wu J; Ebana K; Matsumoto T; Innan H; Kitano H; Ashikari M; Matsuoka M Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11034-9. PubMed ID: 21646530 [TBL] [Abstract][Full Text] [Related]
9. Genomic adaptation of flowering-time genes during the expansion of rice cultivation area. Itoh H; Wada KC; Sakai H; Shibasaki K; Fukuoka S; Wu J; Yonemaru JI; Yano M; Izawa T Plant J; 2018 Jun; 94(5):895-909. PubMed ID: 29570873 [TBL] [Abstract][Full Text] [Related]
10. Natural variation in CTB4a enhances rice adaptation to cold habitats. Zhang Z; Li J; Pan Y; Li J; Zhou L; Shi H; Zeng Y; Guo H; Yang S; Zheng W; Yu J; Sun X; Li G; Ding Y; Ma L; Shen S; Dai L; Zhang H; Yang S; Guo Y; Li Z Nat Commun; 2017 Mar; 8():14788. PubMed ID: 28332574 [TBL] [Abstract][Full Text] [Related]
11. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Suh JP; Jeung JU; Lee JI; Choi YH; Yea JD; Virk PS; Mackill DJ; Jena KK Theor Appl Genet; 2010 Mar; 120(5):985-95. PubMed ID: 20012263 [TBL] [Abstract][Full Text] [Related]
12. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Kuroha T; Nagai K; Gamuyao R; Wang DR; Furuta T; Nakamori M; Kitaoka T; Adachi K; Minami A; Mori Y; Mashiguchi K; Seto Y; Yamaguchi S; Kojima M; Sakakibara H; Wu J; Ebana K; Mitsuda N; Ohme-Takagi M; Yanagisawa S; Yamasaki M; Yokoyama R; Nishitani K; Mochizuki T; Tamiya G; McCouch SR; Ashikari M Science; 2018 Jul; 361(6398):181-186. PubMed ID: 30002253 [TBL] [Abstract][Full Text] [Related]
13. Genetic and physiological characterization of two clusters of quantitative trait Loci associated with seed dormancy and plant height in rice. Ye H; Beighley DH; Feng J; Gu XY G3 (Bethesda); 2013 Feb; 3(2):323-31. PubMed ID: 23390608 [TBL] [Abstract][Full Text] [Related]
14. Genealogy of the "Green Revolution" gene in rice. Nagano H; Onishi K; Ogasawara M; Horiuchi Y; Sano Y Genes Genet Syst; 2005 Oct; 80(5):351-6. PubMed ID: 16394586 [TBL] [Abstract][Full Text] [Related]
15. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.). Ghazy MI; Salem KFM; Sallam A Mol Biol Rep; 2021 Jan; 48(1):157-170. PubMed ID: 33300089 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of seed-shattering genes in rice using an F₃:₄ population derived from an Oryza sativa x Oryza rufipogon cross. Kwon SJ; Yu J; Park YJ; Son JH; Kim NS; Lee JK Genet Mol Res; 2015 Feb; 14(1):1347-61. PubMed ID: 25730074 [TBL] [Abstract][Full Text] [Related]
17. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Fujino K; Sekiguchi H Plant Mol Biol; 2011 Jan; 75(1-2):1-10. PubMed ID: 20960223 [TBL] [Abstract][Full Text] [Related]
18. OsSPL14 promotes panicle branching and higher grain productivity in rice. Miura K; Ikeda M; Matsubara A; Song XJ; Ito M; Asano K; Matsuoka M; Kitano H; Ashikari M Nat Genet; 2010 Jun; 42(6):545-9. PubMed ID: 20495564 [TBL] [Abstract][Full Text] [Related]
19. Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations. Liu T; Li L; Zhang Y; Xu C; Li X; Xing Y J Genet; 2011 Aug; 90(2):377-82. PubMed ID: 21869494 [No Abstract] [Full Text] [Related]
20. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Li XM; Chao DY; Wu Y; Huang X; Chen K; Cui LG; Su L; Ye WW; Chen H; Chen HC; Dong NQ; Guo T; Shi M; Feng Q; Zhang P; Han B; Shan JX; Gao JP; Lin HX Nat Genet; 2015 Jul; 47(7):827-33. PubMed ID: 25985140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]