BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21693764)

  • 1. Comparative proteomic analysis identifies a role for SUMO in protein quality control.
    Tatham MH; Matic I; Mann M; Hay RT
    Sci Signal; 2011 Jun; 4(178):rs4. PubMed ID: 21693764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle.
    Schimmel J; Larsen KM; Matic I; van Hagen M; Cox J; Mann M; Andersen JS; Vertegaal AC
    Mol Cell Proteomics; 2008 Nov; 7(11):2107-22. PubMed ID: 18565875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis.
    Castorálová M; Březinová D; Svéda M; Lipov J; Ruml T; Knejzlík Z
    Biochim Biophys Acta; 2012 Apr; 1823(4):911-9. PubMed ID: 22306003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition.
    Matafora V; D'Amato A; Mori S; Blasi F; Bachi A
    Mol Cell Proteomics; 2009 Oct; 8(10):2243-55. PubMed ID: 19596686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells.
    Yang W; Monroe J; Zhang Y; George D; Bremer E; Li H
    Cancer Lett; 2006 Nov; 243(2):217-27. PubMed ID: 16413676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability.
    Latonen L; Moore HM; Bai B; Jäämaa S; Laiho M
    Oncogene; 2011 Feb; 30(7):790-805. PubMed ID: 20956947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism.
    Kumar P; Ambasta RK; Veereshwarayya V; Rosen KM; Kosik KS; Band H; Mestril R; Patterson C; Querfurth HW
    Hum Mol Genet; 2007 Apr; 16(7):848-64. PubMed ID: 17317785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-canonical ubiquitin-based signals for proteasomal degradation.
    Kravtsova-Ivantsiv Y; Ciechanover A
    J Cell Sci; 2012 Feb; 125(Pt 3):539-48. PubMed ID: 22389393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.
    Matsumoto H; Saitoh H
    Biochem Biophys Res Commun; 2016 Jul; 476(3):153-8. PubMed ID: 27181354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression.
    Xu Y; Ahn JH; Cheng M; apRhys CM; Chiou CJ; Zong J; Matunis MJ; Hayward GS
    J Virol; 2001 Nov; 75(22):10683-95. PubMed ID: 11602710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the SUMO1 and ubiquitin conjugation pathways during the inhibition of proteasome activity with evidence of SUMO1 recycling.
    Bailey D; O'Hare P
    Biochem J; 2005 Dec; 392(Pt 2):271-81. PubMed ID: 16117725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.
    Tatham MH; Geoffroy MC; Shen L; Plechanovova A; Hattersley N; Jaffray EG; Palvimo JJ; Hay RT
    Nat Cell Biol; 2008 May; 10(5):538-46. PubMed ID: 18408734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization.
    Hashiguchi K; Ozaki M; Kuraoka I; Saitoh H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):72-7. PubMed ID: 23159618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo.
    Zhu Q; Wani G; Wang QE; El-mahdy M; Snapka RM; Wani AA
    Exp Cell Res; 2005 Jul; 307(2):436-51. PubMed ID: 15950624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor.
    Tirard M; Almeida OF; Hutzler P; Melchior F; Michaelidis TM
    Mol Cell Endocrinol; 2007 Mar; 268(1-2):20-9. PubMed ID: 17314004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-dependent and independent roles of SUMO in proteostasis.
    Liebelt F; Vertegaal AC
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C284-96. PubMed ID: 27335169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2.
    Her J; Jeong YY; Chung IK
    FEBS Lett; 2015 Oct; 589(21):3277-86. PubMed ID: 26450775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative challenge enhances REGγ-proteasome-dependent protein degradation.
    Zhang Y; Liu S; Zuo Q; Wu L; Ji L; Zhai W; Xiao J; Chen J; Li X
    Free Radic Biol Med; 2015 May; 82():42-9. PubMed ID: 25656993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System-wide changes to SUMO modifications in response to heat shock.
    Golebiowski F; Matic I; Tatham MH; Cole C; Yin Y; Nakamura A; Cox J; Barton GJ; Mann M; Hay RT
    Sci Signal; 2009 May; 2(72):ra24. PubMed ID: 19471022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction and attenuation of neuronal apoptosis by proteasome inhibitors in murine cortical cell cultures.
    Suh J; Lee YA; Gwag BJ
    J Neurochem; 2005 Nov; 95(3):684-94. PubMed ID: 16144541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.