These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21693787)

  • 41. Analysis of induced currents in a rat exposed to 50 Hz linearly and circularly polarized magnetic fields.
    Wake K; Tanaka T; Taki M
    Bioelectromagnetics; 2000 Jul; 21(5):354-63. PubMed ID: 10899771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.
    Sunohara T; Hirata A; Laakso I; Onishi T
    Phys Med Biol; 2014 Jul; 59(14):3721-35. PubMed ID: 24936747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety.
    Recoskie BJ; Scholl TJ; Chronik BA
    Phys Med Biol; 2009 Oct; 54(19):5965-79. PubMed ID: 19759411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induced electric currents in models of man and rodents from 60 Hz magnetic fields.
    Xi W; Stuchly MA; Gandhi OP
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1018-23. PubMed ID: 8001990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A procedure to estimate the electric field induced in human body exposed to unknown magnetic sources.
    Wang W; Bottauscio O; Chiampi M; Giordano D; Zilberti L
    Radiat Prot Dosimetry; 2013 Apr; 154(2):157-63. PubMed ID: 22899216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thresholds and mechanisms of human magnetophosphene perception induced by low frequency sinusoidal magnetic fields.
    Legros A; Nissi J; Laakso I; Duprez J; Kavet R; Modolo J
    Brain Stimul; 2024; 17(3):668-675. PubMed ID: 38740182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ electric fields causing electro-stimulation from conductor contact of charged human.
    Nagai T; Hirata A
    Radiat Prot Dosimetry; 2010 Aug; 140(4):351-6. PubMed ID: 20382974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dosimetry of infant exposure to power-frequency magnetic fields: variation of 99th percentile induced electric field value by posture and skin-to-skin contact.
    Li C; Wu T
    Bioelectromagnetics; 2015 Apr; 36(3):204-18. PubMed ID: 25708724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pilot measurements of ELF contact currents in some electric utility occupations.
    Bowman J; Niple J; Kavet R
    J Occup Environ Hyg; 2006 Jun; 3(6):323-33. PubMed ID: 16718950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of low frequency electric fields with the nervous system: the retina as a model system.
    Attwell D
    Radiat Prot Dosimetry; 2003; 106(4):341-8. PubMed ID: 14690277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NTP Toxicity Studies of 60-Hz Magnetic Fields Administered by Whole Body Exposure to F344/N Rats, Sprague-Dawley Rats, and B6C3F1 Mice.
    Toxic Rep Ser; 1996 Sep; 58():1-B6. PubMed ID: 11986681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NTP Toxicology and Carcinogenesis Studies of 60-HZ Magnetic Fields IN F344/N Rats and B6C3F1 Mice (Whole-body Exposure Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1999 Apr; 488():1-168. PubMed ID: 12563343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electric fields and proliferation in a chronic wound model.
    Goldman R; Pollack S
    Bioelectromagnetics; 1996; 17(6):450-7. PubMed ID: 8986362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz.
    Laakso I
    Phys Med Biol; 2009 Jun; 54(11):3393-404. PubMed ID: 19436102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-frequency dosimetry of inhomogeneous magnetic fields using the coil source model and the household appliance.
    Nishizawa S; Landstorfer FM; Kamimura Y
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):497-502. PubMed ID: 17355062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induced dielectric-force-effect by 50 Hz strong electric field on living tissue.
    Comlekci S
    Biomed Mater Eng; 2006; 16(6):363-7. PubMed ID: 17119275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of tissue conductivity and electrode area on internal electric fields in a numerical human model for ELF contact current exposures.
    Tarao H; Kuisti H; Korpinen L; Hayashi N; Isaka K
    Phys Med Biol; 2012 May; 57(10):2981-96. PubMed ID: 22538267
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison of 60 Hz uniform magnetic and electric induction in the human body.
    Dawson TW; Caputa K; Stuchly MA
    Phys Med Biol; 1997 Dec; 42(12):2319-29. PubMed ID: 9434290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical evaluation of currents induced in a worker by ELF non-uniform electric fields in high voltage substations and comparison with experimental results.
    Tarao H; Korpinen LH; Kuisti HA; Hayashi N; Elovaara JA; Isaka K
    Bioelectromagnetics; 2013 Jan; 34(1):61-73. PubMed ID: 22684733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.