These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. Ozolins V; Majzoub EH; Wolverton C J Am Chem Soc; 2009 Jan; 131(1):230-7. PubMed ID: 19072157 [TBL] [Abstract][Full Text] [Related]
3. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Yang J; Sudik A; Wolverton C; Siegel DJ Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786 [TBL] [Abstract][Full Text] [Related]
4. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Alapati SV; Karl Johnson J; Sholl DS Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751 [TBL] [Abstract][Full Text] [Related]
6. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. Alapati SV; Johnson JK; Sholl DS J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434 [TBL] [Abstract][Full Text] [Related]
7. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra. Marashdeh A; Frankcombe TJ J Chem Phys; 2008 Jun; 128(23):234505. PubMed ID: 18570508 [TBL] [Abstract][Full Text] [Related]
8. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage. Weidenthaler C; Pommerin A; Felderhoff M; Sun W; Wolverton C; Bogdanović B; Schüth F J Am Chem Soc; 2009 Nov; 131(46):16735-43. PubMed ID: 19886669 [TBL] [Abstract][Full Text] [Related]
9. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations. Kim KC; Allendorf MD; Stavila V; Sholl DS Phys Chem Chem Phys; 2010 Sep; 12(33):9918-26. PubMed ID: 20532325 [TBL] [Abstract][Full Text] [Related]
10. Powered by DFT: Screening methods that accelerate materials development for hydrogen in metals applications. Nicholson KM; Chandrasekhar N; Sholl DS Acc Chem Res; 2014 Nov; 47(11):3275-83. PubMed ID: 24937509 [TBL] [Abstract][Full Text] [Related]
11. Strategies for the improvement of the hydrogen storage properties of metal hydride materials. Wu H Chemphyschem; 2008 Oct; 9(15):2157-62. PubMed ID: 18821548 [TBL] [Abstract][Full Text] [Related]
12. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage. Hamaed A; Hoang TK; Moula G; Aroca R; Trudeau ML; Antonelli DM J Am Chem Soc; 2011 Oct; 133(39):15434-43. PubMed ID: 21863869 [TBL] [Abstract][Full Text] [Related]
14. First-principles prediction of new complex transition metal hydrides for high temperature applications. Nicholson KM; Sholl DS Inorg Chem; 2014 Nov; 53(22):11849-60. PubMed ID: 25360774 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics and kinetics of NaAlH4 nanocluster decomposition. Bhakta RK; Maharrey S; Stavila V; Highley A; Alam T; Majzoub E; Allendorf M Phys Chem Chem Phys; 2012 Jun; 14(22):8160-9. PubMed ID: 22569707 [TBL] [Abstract][Full Text] [Related]
16. Structural stability and decomposition of Mg(BH(4))(2) isomorphs-an ab initio free energy study. Voss J; Hummelshøj JS; Lodziana Z; Vegge T J Phys Condens Matter; 2009 Jan; 21(1):012203. PubMed ID: 21817204 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen storage in LiAlH4: predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics. Kang JK; Lee JY; Muller RP; Goddard WA J Chem Phys; 2004 Dec; 121(21):10623-33. PubMed ID: 15549945 [TBL] [Abstract][Full Text] [Related]
18. Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC). Rongeat C; Llamas-Jansa I; Doppiu S; Deledda S; Borgschulte A; Schultz L; Gutfleisch O J Phys Chem B; 2007 Nov; 111(46):13301-6. PubMed ID: 17973422 [TBL] [Abstract][Full Text] [Related]
19. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics. Kim KC; Kulkarni AD; Johnson JK; Sholl DS Phys Chem Chem Phys; 2011 Apr; 13(15):7218-29. PubMed ID: 21409194 [TBL] [Abstract][Full Text] [Related]
20. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. de Jongh PE; Adelhelm P ChemSusChem; 2010 Dec; 3(12):1332-48. PubMed ID: 21080405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]